【題目】為迎接國慶節(jié),某工廠生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠將該商品進行網(wǎng)絡(luò)批發(fā),批發(fā)單價(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
(1)求與的函數(shù)解析式(也稱關(guān)系式).
(2)若一次性批發(fā)量超過20且不超過50件時,求獲得的利潤與的函數(shù)關(guān)系式,同時求當(dāng)批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?
【答案】(1)當(dāng)且為整數(shù)時,;當(dāng)且為整數(shù)時,;當(dāng)且為整數(shù)時,;(2)一次性批發(fā)27或28件時所獲利潤最大,最大利潤是756元.
【解析】
(1)根據(jù)圖象分且為整數(shù)時,且為整數(shù)時,且為整數(shù)時,分別求出函數(shù)解析式;
(2)用一件的利潤(y-25)乘以件數(shù)x列函數(shù)關(guān)系式,配方為頂點式解析式,即可得到答案.
解:(1)當(dāng)且為整數(shù)時,;
當(dāng)且為整數(shù)時,設(shè).
根據(jù)題意,得,
解得,
∴;
當(dāng)且為整數(shù)時,.
(2)當(dāng)且為整數(shù)時,,
∴.
∵,拋物線的開口向下,為整數(shù),
∴當(dāng)或28時,.
答:一次性批發(fā)27或28件時所獲利潤最大,最大利潤是756元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=2,點D是AB的中點,連接DO并延長交⊙O于點P,過點P作PF⊥AC于點F.
(1)求劣弧PC的長;(結(jié)果保留π)
(2)求陰影部分的面積.(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點是這個菱形內(nèi)部或邊上的一點,若以點,,為頂點的三角形是等腰三角形,則,(,兩點不重合)兩點間的最短距離為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為BC邊上一動點(不與點B、C重合),延長AE到點F,連接BF,且∠AFB=45°,G為DC邊上一點,且DG=BE,連接DF,點F關(guān)于直線AB的對稱點為M,連接AM、BM.
(1)依據(jù)題意,補全圖形;
(2)求證:∠DAG=∠MAB;
(3)用等式表示線段BM、DF與AD的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境:如圖1,在數(shù)學(xué)活動課上,老師讓同學(xué)們畫了等腰Rt△ABC和等腰Rt△ADE,并連接CE,BD.
操作發(fā)現(xiàn):(1)當(dāng)?shù)妊?/span>Rt△ADE繞點A旋轉(zhuǎn),如圖2,勤奮小組發(fā)現(xiàn)了:
①線段CE與線段BD之間的數(shù)量關(guān)系是 .
②直線CE與直線BD之間的位置關(guān)系是 .
類比思考:(2)智慧小組在此基礎(chǔ)上進行了深入思考,如圖3,若△ABC與△ADE都為直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,請你寫出CE與BD的數(shù)量關(guān)系和位置關(guān)系,并加以證明.
拓展應(yīng)用:(3)創(chuàng)新小組在(2)的基礎(chǔ)上,又作了進一步拓展研究,當(dāng)點E在直線AB上方時,若DE∥AB,且AB=,AD=1,其他條件不變,試求出線段CE的長.(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以A(0, )為圓心的圓與x軸相切于坐標(biāo)原點O,與y軸相交于點B,弦BD的延長線交x軸的負(fù)半軸于點E,且∠BEO=60°,AD的延長線交x軸于點C.
(1)分別求點E、C的坐標(biāo);
(2)求經(jīng)過A、C兩點,且以過E而平行于y軸的直線為對稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對稱軸與AC的交點為M,試判斷以M點為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,基燈塔AB建在陡峭的山坡上,該山坡的坡度i=1:0.75.小明為了測得燈塔的高度,他首先測得BC=20m,然后在C處水平向前走了34m到達一建筑物底部E處,他在該建筑物頂端F處測得燈塔頂端A的仰角為43°.若該建筑物EF=20m,則燈塔AB的高度約為(精確到0.1m,參考數(shù)據(jù):sin43°=0.68,cos43°=0.73,tan43°=0.93)( )
A.46.7mB.46.8mC.53.5mD.67.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)全體同學(xué)參加了“關(guān)懷貧困學(xué)生”愛心捐款活動,該校隨機抽查了七、八、九三個年級部分學(xué)生捐款情況,將結(jié)果繪制成兩幅不完整的統(tǒng)計圖.根據(jù)圖中的信息,解決下列問題:
(1)這次共抽查了_______名學(xué)生進行統(tǒng)計,其中類所對應(yīng)扇形的圓心角的度數(shù)為________;
(2)將條形統(tǒng)計圖補充完整;
(3)該校有名學(xué)生,估計該校捐款元的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的是寶雞市文化景觀標(biāo)志“天下第一燈”,它由國際不銹鋼板整體鍛造,表面涂有仿古金色漆,以仿青銅紋飾雕刻的柱體四盞燈分層布置.一天上午,數(shù)學(xué)興趣小組的同學(xué)們帶著測量工具來測量“天下第一燈”的高度,由于有圍欄保護,他們無法到達燈的底部他們制定了一種測量方案,圖2所示的是他們測量方案的示意圖,先在周圍的廣場上選擇一點并在點處安裝了測量器在點處測得該燈的頂點P的仰角為;再在的延長線上確定一點使米,在點處測得該燈的頂點的仰角為.若測量過程中測量器的高度始終為米,求“天下第一燈”的高度.,最后結(jié)果取整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com