【題目】如圖,在□ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AD=DF,求證:AF平分∠BAD.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;
(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.
試題解析:
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四邊形BFDE是平行四邊形.
∵DE⊥AB,
∴∠DEB=90°,
∴四邊形BFDE是矩形;
(2)解:∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC=
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形的兩邊長(zhǎng)分別為2和4,則第三邊長(zhǎng)可能是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句中正確的是( )
A. 0既沒(méi)有倒數(shù)又沒(méi)有相反數(shù)
B. 倒數(shù)等于本身的數(shù)只有±1
C. 相反數(shù)等于本身的數(shù)有無(wú)數(shù)個(gè)
D. 絕對(duì)值等于本身的數(shù)有有限個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件中,是必然事件的為( )
A.3天內(nèi)會(huì)下雨
B.打開(kāi)電視,正在播放廣告
C.367人中至少有2人公歷生日相同
D.某婦產(chǎn)醫(yī)院里,下一個(gè)出生的嬰兒是女孩
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過(guò)坐標(biāo)原點(diǎn),且當(dāng)x<0時(shí),y隨x的增大而減。
(1)求拋物線的解析式,并寫(xiě)出y<0時(shí),對(duì)應(yīng)x的取值范圍;
(2)設(shè)點(diǎn)A是該拋物線上位于x軸下方的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)D,再作AB⊥x軸于點(diǎn)B,DC⊥x軸于點(diǎn)C.
①當(dāng)BC=1時(shí),直接寫(xiě)出矩形ABCD的周長(zhǎng);
②設(shè)動(dòng)點(diǎn)A的坐標(biāo)為(a,b),將矩形ABCD的周長(zhǎng)L表示為a的函數(shù)并寫(xiě)出自變量的取值范圍,判斷周長(zhǎng)是否存在最大值?如果存在,求出這個(gè)最大值,并求出此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com