【題目】如圖,點C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點F。
(1)依題意補全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE= , ∠COF= ∠COB。
(理由: )
∵點C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠。
(理由: )
∴∠ACE=∠COF。
【答案】
(1)解:如圖
(2)∠ACD,角平分線的性質,COB,等量代換
【解析】(2)∵CE平分∠ACD,OF平分∠COB,
∴∠ACE=_ ∠ACD,∠COF= ∠COB。
(理由: 角平分線的性質)
∵點C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠COB。
(理由: 等量代換)
∴∠ACE=∠COF。
【考點精析】解答此題的關鍵在于理解角的平分線的相關知識,掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線,以及對余角和補角的特征的理解,了解互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= (k為常數(shù),k≠0)的圖象經過點A(2,3).
(Ⅰ)求這個函數(shù)的解析式;
(Ⅱ)判斷點B(﹣1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(Ⅲ)當﹣3<x<﹣1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根據上述規(guī)律,第n個等式應表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點,AD=AB,AD,BC的延長線相交于點E.
(1)求證:AD是半圓O的切線;
(2)連結CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你認為其中正確信息的個數(shù)有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com