拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:




0
1
2



0
4
6
6
4

從上表可知,下列說法正確的是     
①拋物線與軸的一個交點為;、趻佄锞與軸的交點為;
③拋物線的對稱軸是:直線;   ④在對稱軸左側(cè)增大而增大.
①②④.

試題分析:從表中知道:當(dāng)x=-2時,y=0,當(dāng)x=0時,y=6,
∴拋物線與x軸的一個交點為(-2,0),拋物線與y軸的交點為(0,6).
從表中還知道:當(dāng)x=-1和x=2時,y=4,
∴拋物線的對稱軸方程為x=(-1+2)=,同時也可以得到在對稱軸左側(cè)y隨x增大而增大.
所以①②④正確.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標(biāo):
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸的一個交點A的坐標(biāo)為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標(biāo);
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.若以AB為一底邊的梯形ABCD的面積為9.
求此拋物線的解析式,并指出頂點E的坐標(biāo);
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設(shè)點P運動的時間為t秒.
①當(dāng)t為   秒時,△PAD的周長最?當(dāng)t為     秒時,△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線先沿軸向右平移1個單位, 再沿軸向上移2個單位,所得拋物線的解析式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線向左平移2個單位,再向下平移1個單位后得到的拋物線解析式是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標(biāo);
(3)求經(jīng)過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對拋物線而言,下列結(jié)論正確的是
A.與軸有兩個交點B.開口向上
C.與軸交點坐標(biāo)是(0,3)D.頂點坐標(biāo)是(1,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象與x軸沒有交點,則k的取值范圍為
A.k﹥-B.k≥-且k≠0
C.k﹤-D.k﹥-且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,那么一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象大致為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案