【題目】如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點(diǎn). ①試說(shuō)明△OBC是等腰三角形;
②連接OA,試判斷直線OA與線段BC的關(guān)系,并說(shuō)明理由.
【答案】解:①∵在△ABC中,AB=AC, ∴∠ABC=∠BCA;
∵BD、CE分別平分∠ABC、∠BCA,
∴∠OBC=∠BCO;
∴OB=OC,
∴△OBC為等腰三角形.
②在△AOB與△AOC中.
∵ ,
∴△AOB≌△AOC(SSS);
∴∠BAO=∠CAO;
∴直線AO垂直平分BC.(等腰三角形頂角的平分線、底邊上的高、底邊上的中線互相重合)
【解析】①根據(jù)對(duì)邊對(duì)等角得到∠ABC=∠ACB,再結(jié)合角平分線的定義得到∠OBC=∠OCB,從而證明OB=OC;②首先根據(jù)全等三角形的判定和性質(zhì)得到OA平分∠BAC,再根據(jù)等腰三角形的三線合一的性質(zhì)得到直線AO垂直平分BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點(diǎn)O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿A→D→C運(yùn)動(dòng),點(diǎn)P從點(diǎn)A出發(fā)的同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q也停止運(yùn)動(dòng).設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),PQ∥CD?
(2)從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),△PQC為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求證:不論k為何值時(shí),關(guān)于x的一元二次方程x2+(k﹣2)x+(k﹣4)=0有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,AB的垂直平分線與直線AC相交所成銳角為40°,則此等腰三角形的頂角為( )
A.50°
B.60°
C.150°
D.50°或130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.
(1)直接寫(xiě)出點(diǎn)D(m,n)所有的特征線;
(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行書(shū)法比賽,有39名同學(xué)參加預(yù)賽,只能有19名同學(xué)參加決賽,他們預(yù)賽的成績(jī)各不相同,其中一名同學(xué)想知道自己能否進(jìn)入決賽,不僅要了解自己的預(yù)賽成績(jī),還要了解這39名同學(xué)預(yù)賽成績(jī)的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com