【題目】某初級中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對該校全體志愿者進(jìn)行隨機(jī)抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計圖.條形統(tǒng)計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統(tǒng)計圖中的百分?jǐn)?shù)指的是該年級被抽到的志愿者數(shù)與樣本容量的比.
(1)請補(bǔ)全條形統(tǒng)計圖;
(2)若該校共有志愿者600人,則該校九年級大約有多少志愿者?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)媒體報道,我國最新研制的“察打一體”無人機(jī)的速度極快,經(jīng)測試最高速度可達(dá)204000米/分,204000這個數(shù)用科學(xué)記數(shù)法表示為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中, ,垂足為點(diǎn), ,垂足為點(diǎn), 為邊的中點(diǎn),連結(jié)、、.
()猜想的形狀,并說明理由.
()若, ,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點(diǎn)為A,M是這個二次函數(shù)圖象上的點(diǎn),O是原點(diǎn).
(1)不等式b+2c+8≥0是否成立?請說明理由;
(2)設(shè)S是△AMO的面積,求滿足S=9的所有點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且
(1)直接寫出的面積 ;
(2)如圖②,若,作的平分線交于,交于,試說明;
(3)如圖③,若,點(diǎn)在射線上運(yùn)動,的平分線交的延長線于點(diǎn),在點(diǎn)運(yùn)動過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個三角形全等的過程,填空.
如圖:已知CD=CB,
在△ABC和△ADC中,
AC=_____,(公共邊)
CB=CD,(已知)
∠A=∠A,(_______)
則△ABC和△ADC滿足兩邊及一邊的對角分別相等,即滿足_____,
很顯然:△ABC_____△ADC,(填“全等于”或“不全等于”)
下結(jié)論:SSA_____(填“能”或“不能”)判定兩個三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備租用一輛出租車搞個體營運(yùn),現(xiàn)有甲乙兩家出租車公司可以和他簽訂合同,設(shè)汽車每月行駛x千米,應(yīng)付給甲公司的月租費(fèi)y1元,應(yīng)付給乙公司的月租費(fèi)是y2元,y1、y2與x之間的函數(shù)關(guān)系的圖象如圖所示,請根據(jù)圖象回答下列問題:
(1)當(dāng)汽車每月行駛的路程 時,甲乙兩家公司的月租費(fèi)一樣;當(dāng)汽車每月行駛的路程 時,甲公司的月租費(fèi)比乙公司的月租費(fèi)高.
(2)分別求出y1、y2與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)2x2-8x=0;
(2)x2-3x-4=0.
求出拋物線的開口方向、對稱軸、頂點(diǎn)坐標(biāo).
(3)y=x2-x+3(公式法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC
∴∠2=∠3=90°
∴BD∥EF ( )
∴∠4=_____ ( )
∵∠1=∠4
∴∠1=_____
∴DG∥BC ( )
∴∠ADG=∠C( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com