【題目】如圖,若ABCD,在下列三種情況下探究∠APC與∠PAB,∠PCD的數(shù)量關(guān)系.

(1)圖①中,∠APC+PAB+PCD=   

(2)圖②中,  

(3)圖③中,寫出∠APC與∠PAB,∠PCD的三者數(shù)量關(guān)系,并說明理由

【答案】(1)360°

(2)∠APC=PAB+PCD

(3)∠APC+∠PAB=∠PCD,理由見解析.

【解析】試題分析:三個圖形中過PPEAB平行,由ABCD平行,利用平行于同一條直線的兩直線平行得到PECD平行,利用平行線的性質(zhì)判斷即可得到結(jié)果.

試題解析:(1)過PPEAB,如圖

ABCD

PECD,

∴∠A+APE=180°,EPC+C=180°,

∴∠APC+PAB+PCD=A+APE+EPC+C=360°;

(2)過PPEAB,如圖

ABCD,

PECD,

∴∠A=APE,EPC=C,

∴∠APC=APE+EPC=PAB+PCD;

(3)APC=PCD-PAB

理由為:過PPEAB,如圖

ABCD

PECD,

∴∠PAB+APE=180°,EPC+PCD=180°,

APE=180°-PABEPC=180°-PCD,

∴∠APC=APE-EPC=PCD-PAB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在實數(shù)范圍內(nèi)定義一種運算“﹡”,其規(guī)則為a﹡b=a2﹣b2 , 根據(jù)這個規(guī)則,求方程(x﹣2)﹡1=0的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l與坐標軸分別交于A、B兩點,BAO=45°,點A坐標為(8,0).動點P從點O出發(fā),沿折線段OBA運動,到點A停止;同時動點Q也從點O出發(fā),沿線段OA運動,到點A停止;它們的運動速度均為每秒1個單位長度.

(1)求直線AB的函數(shù)關(guān)系式;

(2)若點A、B、O與平面內(nèi)點E組成的圖形是平行四邊形,請直接寫出點E的坐標;

(3)在運動過程中,當P、Q的距離為2時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個兩位數(shù)的十位數(shù)字是a,個位數(shù)字是b,這個兩位數(shù)恰好等于它的各位數(shù)字之和的4倍,則這樣的兩位數(shù)稱為“巧數(shù)”.是巧數(shù)的兩位數(shù)共有( )個.

A. l個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程4x2+1=4x的根的情況是( )

A. 沒有實數(shù)根 B. 只有一個實數(shù)根

C. 有兩個相等的實數(shù)根 D. 有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“”與“”表示一種法則:(ab)=﹣b,(ab)=﹣a,如(23)=﹣3,則(20172016)(20152014)=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動如下的兩個轉(zhuǎn)盤(每個轉(zhuǎn)盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.

(1)轉(zhuǎn)動轉(zhuǎn)盤時,該轉(zhuǎn)盤指針指向歌曲“3”的概率是 ;

(2)若允許該歌手替換他最不擅長的歌曲“3”,即指針指向歌曲“3”時,該歌手就選擇自己最擅長的歌曲“1”, 請用樹形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項式x2﹣3x+2的值為6,則多項式3x2﹣9x﹣5的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象過點A(3,4),求反比例函數(shù)的解析式,并判斷點B(6,2)是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案