【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的部分關(guān)系如圖所示.那么,從關(guān)閉進(jìn)水管起________分鐘該容器內(nèi)的水恰好放完.

【答案】8

【解析】試題分析:由0-4分鐘的函數(shù)圖象可知進(jìn)水管的速度,設(shè)出水管每分鐘的出水量為m升,由函數(shù)圖象,列出方程求得m的值,再用30除以m的值即可的答案.

試題解析:

由函數(shù)圖象,得:

進(jìn)水管每分鐘的進(jìn)水量為: (升).

設(shè)出水管每分鐘的出水量為升,由函數(shù)圖象,得

解得:

(分鐘).

即從關(guān)閉進(jìn)水管起需要8分鐘該容器內(nèi)的水恰好放完.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,P為AB中點(diǎn),BEDP交DP延長(zhǎng)線于E,連結(jié)AE,AFAE交DP于F,連結(jié)BF,CF.下列結(jié)論:EF=AF;AB=FB;CFBE;EF=CF.其中正確的結(jié)論有( )個(gè).

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D,與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B的坐標(biāo)為(3,0),OB=OC=3OA.

(1)求這個(gè)二次函數(shù)的解析式;
(2)如圖,若點(diǎn)G(2,m)是該拋物線上一點(diǎn),E是直線AG下方拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEG的面積最大?求此時(shí)點(diǎn)E的坐標(biāo)和△AEG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線yx與雙曲線y (k>0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.點(diǎn)C是雙曲線上一點(diǎn),且縱坐標(biāo)為8,則AOC的面積為(  )

A. 8 B. 32 C. 10 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在﹣3,﹣1,01這四個(gè)數(shù)中,最小的數(shù)是( 。

A. 3B. 1C. 0D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中.正確的是 ( )

A. 0是最小的有理教 B. 0是最小的整數(shù)

C. 0的倒數(shù)和相反數(shù)都是0 D. 0是最小的非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為射線AB上一點(diǎn),AB=30,AC比BC的 多5,P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,M為BP的中點(diǎn),N為QM的中點(diǎn),以下結(jié)論: ①BC=2AC;②AB=4NQ;③當(dāng)PB= BQ時(shí),t=12,其中正確結(jié)論的個(gè)數(shù)是(

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB分別在x軸正半軸與y軸正半軸上,線段OAOBOAOB)的長(zhǎng)是方程xx﹣4+84﹣x=0的兩個(gè)根,作線段AB的垂直平分線交y軸于點(diǎn)D,交AB于點(diǎn)C

1)求線段AB的長(zhǎng);

2)求tan∠DAO的值;

3)若把△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α°0α90),點(diǎn)D,C的對(duì)應(yīng)點(diǎn)分別為D1C1,得到△AD1C1,當(dāng)AC1∥y軸時(shí),分別求出點(diǎn)C1,點(diǎn)D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線yx與雙曲線y (k>0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.點(diǎn)C是雙曲線上一點(diǎn),且縱坐標(biāo)為8,則AOC的面積為(  )

A. 8 B. 32 C. 10 D. 15

查看答案和解析>>

同步練習(xí)冊(cè)答案