精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分線交AB于E,交BC于D,BD=8,則AC=   
【答案】分析:如圖,連接AD.證明∠3=30°,則AC=AD=BD.
解答:解:∵△ABC中,∠C=90°,∠B=15°,
∴∠BAC=180°-∠C-∠B=180°-90°-15°=75°.
連接AD.
∵ED是AB的垂直平分線,∴AD=BD=8,∠B=∠1=15°,
∴∠2=∠BAC-∠1=75°-15°=60°.
在Rt△ACD中,∠2=60°,∠C=90°,
∴∠3=180°-∠C-∠2=180°-90°-60°=30°.
∴AC=AD=BD=×8=4.
點評:此題主要考查線段的垂直平分線的性質及等腰三角形的性質等幾何知識.線段的垂直平分線上的點到線段的兩個端點的距離相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案