【題目】在實施“城鄉(xiāng)危舊房改造工程”中,河西區(qū)計劃推出A、B兩種新戶型根據(jù)預算,建成10套A種戶型和30套B種戶型住房共需資金480萬元,建成30套A種戶型和10套B種戶型住房共需資金400萬元
在危舊房改造中建成一套A種戶型和一套B種戶型住房所需資金分別是多少萬元?
河西區(qū)有800套住房需要改造,改造資金由國家危舊房補貼和地方財政共同承擔,若國家補貼撥付的改造資金不少于2100萬元,河西區(qū)財政投入額資金不超過7700萬元,其中國家財政投入到A、B兩種戶型的改造資金分別為每套2萬元和3萬元
請你計算求出A種戶型至少可以建多少套?最多可以建多少套?
設這項改造工程總投入資金W萬元,建成A種戶型m套,寫出W與m的關(guān)系式,并求出最少總投入.
【答案】(1)在危舊房改造中建成一套A種戶型和一套B種戶型住房所需資金分別是9萬元和13萬元.(2)①種戶型至少可以建100套,最多可以建300套.②時,W最小值萬元.
【解析】
設在危舊房改造中建成一套A種戶型和一套B種戶型住房所需資金分別是x萬元和y萬元,列出方程組即可解決問題;
設A種戶型有x套,則B種戶型有套列出不等式組即可解決問題;
根據(jù)總投入資金建A種戶型的費用建B種戶型的費用,利用一次函數(shù)的性質(zhì)即可解決問題.
設在危舊房改造中建成一套A種戶型和一套B種戶型住房所需資金分別是x萬元和y萬元,
由題意得:,
解得,
在危舊房改造中建成一套A種戶型和一套B種戶型住房所需資金分別是9萬元和13萬元;
設A種戶型有x套,則B種戶型有套,
由題意得:,
解得,
種戶型至少可以建100套,最多可以建300套;
,
,
隨x增大而減少,
,
時,W最小值萬元.
科目:初中數(shù)學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為培養(yǎng)學生的特長愛好,提高學生的綜合素質(zhì),某校音樂特色學習斑準備從京東商城里一次性購買若干個尤克里里和豎笛(每個尤克里里的價格相同,每個豎笛的價格相同),購買個豎笛和個尤克里里共需元;豎笛單價比尤克里里單價的一半少元.
(1)求豎笛和尤克里里的單價各是多少元?
(2)根據(jù)學校實際情況,需一次性購買豎笛和尤克里里共個,但要求購買豎笛和尤克里里的總費用不超過元,則該校最多可以購買多少個尤克里里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,公路MN和公路PQ在點P處交匯,且∠QPN=30°,點A處有一所中學,AP=160m.若拖拉機行駛時,周圍100m以內(nèi)會受到噪音的影響,那么拖拉機在公路MN上沿PN方向行駛時:
(1)學校是否會受到噪聲影響?
(2)如果不受影響,請說明理由;如果受影響,已知拖拉機的速度為18km/h,那么學校受影響的時間為多少秒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+m的圖象和y軸交于點B,與正比例函數(shù)y=x圖象交于點P(2,n).
(1)求m和n的值;
(2)求△POB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【操作發(fā)現(xiàn)】
如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,點B的對應點為B′,點C的對應點為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B= .
【問題解決】
如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.
…
請參考小明同學的想法,完成該問題的解答過程.(一種方法即可)
【靈活運用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖8,在平面直角坐標系xOy中,A(0,8),B(0,4),點C在x軸的正半軸上,點D為OC的中點.
(1)當BD與AC的距離等于2時,求線段OC的長;
(2)如果OE⊥AC于點E,當四邊形ABDE為平行四邊形時,求直線BD的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com