【題目】如圖,在中,,,,點D在上,將沿直線翻折后,將點A落在點E處,如果,那么線段的長為( )
A.B.C.1D.
【答案】B
【解析】
根據翻折變換的性質可得∠ABD=∠EBD,AD=DE,AB=BE,連接AE,可得△ADE是等腰直角三角形,然后求出∠DAE=45°,從而得到∠BAE,再根據等腰三角形兩底角相等求出∠ABE,然后求出∠ABD,根據直角三角形兩銳角互余求出∠ABC,再求出∠CBD=45°,得到△BCD是等腰直角三角形,根據等腰直角三角形的性質可得CD=BC,然后利用勾股定理列式求出AC,然后根據AD=AC-CD計算得到AD,即為DE的長.
解:∵△ADB沿直線BD翻折后點A落在點E處,
∴∠ABD=∠EBD,AD=DE,AB=BE,
如圖,連接AE,
∵DE∥BC,∠C=90°,
∴∠C= ,
∠ADE=90°,
∴△ADE是等腰直角三角形,
∴∠DAE=45°,
∵∠BAC=30°,
∴∠BAE=30°+45°=75°,
在△ABE中,∠ABE=180°-2×75°=30°,
∴∠ABD=∠ABE=×30°=15°,
∵∠BAC=30°,∠C=90°,AB=2,
∴∠ABC=90°-30°=60°,BC=1,
∴∠CBD=∠ABC-∠ABD=60°-15°=45°,
∴△BCD是等腰直角三角形,
∴CD=BC=1,
在Rt△ABC中,AB=2,BC=1,
∴AC=
∴AD=AC-CD= 即DE=
故選:B.
科目:初中數學 來源: 題型:
【題目】善于學習的小明在學習了一次方程(組),一元一次不等式和一次函數后,把相關知識歸納整理如下:
(1)請你根據以上方框中的內容在下面數字序號后寫出相應的結論:
① ;② ;③ ;④ ;
(2)如果點C的坐標為(1,3),那么不等式kx+b≤k1x+b1的解集為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一個正比例函數和一個一次函數的圖象交于點P(-2、2)且一次函數的圖象與y軸的交點Q的縱坐標為4.
(1)求這兩個函數的解析式;
(2)在同一直角坐標系中畫出這兩個函數的圖象;
(3)求△PQO的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,某一時刻,AC=18km,且OA=OC.輪船甲自西向東勻速行駛,同時輪船乙沿正北方向勻速行駛,它們的速度分別為40km/h和30km/h,經過0.2h,輪船甲行駛至B處,輪船乙行駛至D處,求此時B處距離D處多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖,以△ABC的BC邊上一點O為圓心的圓,經過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列等式:
第1個等式: ;
第2個等式: ;
第3個等式: ;
第4個等式: );
…
請解答下列問題:
(1)按以上規(guī)律列出第5個等式:a5= = ;
(2)用含有n的代數式表示第n個等式:an= = (n為正整數);
(3)求a1+a2+a3+a4+…+a100的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于兩點,與直線交于點C(4,2).
(1)點A坐標為( , ),B為( , );
(2)在線段上有一點E,過點E作y軸的平行線交直線于點F,設點E的橫坐標為m,當m為何值時,四邊形是平行四邊形;
(3)若點P為x軸上一點,則在平面直角坐標系中是否存在一點Q,使得四個點能構成一個菱形.若存在,求出所有符合條件的Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象交x軸于A(﹣1,0)、B(2,0)兩點,交y軸于點C(0,﹣2),過點A、C畫直線.
(1)求二次函數的解析式;
(2)若點P在x軸正半軸上,且PA=PC,求OP的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com