【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為件.試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是元時(shí),每天的銷售量為件;銷售單價(jià)每上漲元,每天的銷售量就減少件.

1)寫(xiě)出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)()與銷售單價(jià)()之間的函數(shù)關(guān)系式.

2)當(dāng)銷售單價(jià)定為多少元時(shí),該文具每天的銷售利潤(rùn)最大?最大利潤(rùn)為多少元?

3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了,兩種營(yíng)銷方案:

方案:該文具的銷售單價(jià)高于進(jìn)價(jià),但不超過(guò)元;

方案:每天銷售量不少于件,且每件文具的利潤(rùn)至少為元.

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

【答案】1;(2)當(dāng)銷售單價(jià)定為元時(shí),該文具每天的銷售利潤(rùn)最大,最大利潤(rùn)為元;(3方案的最大利潤(rùn)更高.理由見(jiàn)解析.

【解析】

1)根據(jù)利潤(rùn)=(銷售單價(jià)-進(jìn)價(jià))×銷售量,列出函數(shù)關(guān)系式即可;

2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運(yùn)用配方法求最大值;

3)分別求出方案ABx的取值范圍,然后分別求出A、B方案的最大利潤(rùn),然后進(jìn)行比較.

解:(1)由題意得:銷售量,

2

,

函數(shù)圖象開(kāi)口向下,有最大值,

當(dāng)時(shí),

答:當(dāng)銷售單價(jià)定為元時(shí),該文具每天的銷售利潤(rùn)最大,最大利潤(rùn)為元.

3方案的最大利潤(rùn)更高.理由如下:

方案中:,

利潤(rùn),其圖象的對(duì)稱軸為直線,且開(kāi)口向下,

當(dāng)時(shí),有最大值,

此時(shí);

方案中:

解得:

利潤(rùn),其圖象的對(duì)稱軸為直線,且開(kāi)口向下,

當(dāng)時(shí),有最大值,

此時(shí),

,

方案的最大利潤(rùn)更高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)A的坐標(biāo)為(5,0),頂點(diǎn)B、C都在第一象限,對(duì)角線AC、BO交于點(diǎn)D,雙曲線y=x0)經(jīng)過(guò)點(diǎn)D,且ACBO40,則k的值為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛(ài)思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱為中垂三角形.如圖1、圖2、圖3中,的中線,于點(diǎn),像這樣的三角形均稱為中垂三角形

(特例探究)

1)如圖1,當(dāng),時(shí),___________;

如圖2,當(dāng),時(shí),_____,______

(歸納證明)

2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論;

(拓展證明)

3)如圖4,在中,,、分別是邊、的中點(diǎn),連結(jié)并延長(zhǎng)至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=120°BC=4,DAB的中點(diǎn),DCBC,則ABC的面積是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°30°,則該電線桿PQ的高度(  )

A. 6+2 B. 6+ C. 10 D. 8+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線的頂點(diǎn)為點(diǎn),與軸的負(fù)半軸交于點(diǎn),直線交拋物線W于另一點(diǎn),點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)過(guò)點(diǎn)軸,交軸于點(diǎn),若平分,求拋物線W的解析式;

3)若,將拋物線W向下平移個(gè)單位得到拋物線,如圖2,記拋物線的頂點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,與射線的交點(diǎn)為.問(wèn):在平移的過(guò)程中,是否恒為定值?若是,請(qǐng)求出的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,為邊上點(diǎn),將沿折疊至處,交于點(diǎn),若,,則的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地,先是一段上坡路,然后是一段平路,小明騎車從甲地出發(fā),到達(dá)乙地后休息一段時(shí)間,然后原路返回甲地.假設(shè)小明騎車在上坡、平路、下坡時(shí)分別保持勻速前進(jìn),已知小明騎車上坡的速度比平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km,設(shè)小明出發(fā)xh后,到達(dá)離乙地ykm的地方,圖中的折線ABCDEF表示yx之間的函數(shù)關(guān)系.

1)小明騎車在平路上的速度為   km/h,他在乙地休息了   h

2)分別求線段AB、EF所對(duì)應(yīng)的函數(shù)關(guān)系式.

3)從甲地到乙地經(jīng)過(guò)丙地,如果小明兩次經(jīng)過(guò)丙地的時(shí)間間隔為0.85h,求丙地與甲地之間的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+cx軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫(xiě)出所有正確結(jié)論的序號(hào))

①b0

②a﹣b+c0

陰影部分的面積為4

c=﹣1,則b2=4a

查看答案和解析>>

同步練習(xí)冊(cè)答案