【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的4只小球,小球上分別標(biāo)有1、2、3、4四個(gè)數(shù)字
(1)從袋中隨機(jī)摸出一只小球,求小球上所標(biāo)數(shù)字為奇數(shù)的概率;
(2)從袋中隨機(jī)摸出一只小球,再從剩下的小球中隨機(jī)摸出一只小球,求兩次摸出的小球上所標(biāo)數(shù)字之和為5的概率.

【答案】
(1)解:∵質(zhì)地完全相同的4只小球,小球上分別標(biāo)有1、2、3、4四個(gè)數(shù)字,

∴袋中隨機(jī)摸出一只小球,求小球上所標(biāo)數(shù)字為奇數(shù)的概率= =


(2)解:列表得:

1

2

3

4

1

3

4

5

2

3

5

6

3

4

5

7

4

5

6

7

∵共有12種等可能的結(jié)果,兩次摸出的小球上所標(biāo)數(shù)字之和為5的情況數(shù)為4,

∴兩次摸出的小球上所標(biāo)數(shù)字之和為5的概率= =


【解析】(1)用奇數(shù)的個(gè)數(shù)除以總數(shù)即可求出小球上所標(biāo)數(shù)字為奇數(shù)的概率;(2)首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結(jié)果與兩次摸出的小球上所標(biāo)數(shù)字之和為5的情況數(shù)即可求出其概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店共有單價(jià)分別為10元、15元和20元的3種文具盒出售,該商店統(tǒng)計(jì)了2011年3月份這3種文具盒的銷售情況,并繪制統(tǒng)計(jì)圖如下:
(1)請?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)小亮認(rèn)為:該商店3月份這3種文具盒總的平均銷售價(jià)格為 (元),你認(rèn)為小亮的計(jì)算方法正確嗎?如不正確,請計(jì)算出總的平均銷售價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,BAC=54°,點(diǎn)DAB中點(diǎn),且ODABBAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC______ °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校田園科技社團(tuán)計(jì)劃購進(jìn)A、B兩種花卉,兩次購買每種花卉的數(shù)量以及每次的總費(fèi)用如下表所示:

花卉數(shù)量(單位:株)

總費(fèi)用(單位:元)

A

B

第一次購買

10

25

225

第二次購買

20

15

275


(1)你從表格中獲取了什么信息?(請用自己的語言描述,寫出一條即可);
(2)A、B兩種花卉每株的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,tanB= ,BC=6,過點(diǎn)A作BC邊上的高,垂足為點(diǎn)D,且滿足BD:CD=2:1,則△ABC面積的所有可能值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=2 ,以點(diǎn)A為圓心,AD為半徑的圓與BC相切于點(diǎn)E,交AB于點(diǎn)F
(1)求∠ABE的大小及 的長度;
(2)在BE的延長線上取一點(diǎn)G,使得 上的一個(gè)動(dòng)點(diǎn)P到點(diǎn)G的最短距離為2 ﹣2,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,4),B(﹣4,n)在反比例函數(shù)y= (k>0)的圖象上,經(jīng)過點(diǎn)A、B的直線與x軸相交于點(diǎn)C,與y軸相交于點(diǎn)D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙O分別交AB、AC于點(diǎn)D、E,連結(jié)OD、OE,若∠A=65°,則∠DOE=

查看答案和解析>>

同步練習(xí)冊答案