【題目】某自行車廠一周計劃每日生產(chǎn)輛自行車,由于人數(shù)和操作原因,每日實際生產(chǎn)量分別為輛、輛、輛、輛、輛、輛、輛.

用正負數(shù)表示每日實際生產(chǎn)量與計劃量的增減情況;

該車廠本周實際共生產(chǎn)多少輛自行車?平均每日實際生產(chǎn)多少輛自行車?

【答案】,,,,;(2)總產(chǎn)量為輛,平均每日實際生產(chǎn)

【解析】

1)在一對具有相反意義的量中,先規(guī)定其中一個為正則另一個就用負表示.比400輛多出的數(shù)記作正數(shù),400輛少的記作負數(shù);

2)本周實際共生產(chǎn)自行車的輛數(shù)=本周內(nèi)每日實際生產(chǎn)量之和再除以7即得平均每日實際生產(chǎn)自行車的輛數(shù)

1)以每日生產(chǎn)400輛自行車為標準,多出的數(shù)記作正數(shù),不足的數(shù)記作負數(shù),則有+5,﹣7,﹣3+10,﹣9,﹣15,+5;

2405+393+397+410+391+385+405=27862786÷7=398

即總產(chǎn)量為2786,平均每日實際生產(chǎn)398

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.
(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植﹣畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張第一次用180元購買了8套兒童服裝,以一定價格出售.如果以每套兒童服裝80元的價格為標準,超出的記作整數(shù),不足的記作負數(shù),記錄如下(單位:元):

請通過計算說明

(1)小張賣完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?

(2)每套兒童服裝的平均售價是多少元?

(3)小張第二次用第一次的進價再次購買900元的兒童服裝,如果他預計第二次每套服裝的平均售價75元,按他的預計第二次售價可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)、、、…、、的每個數(shù)字前添上“+”“-”,使得算出的結(jié)果是一個最小的非負數(shù),請寫出符合條件的式子:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于點AB,點C是線段AB上一點,四邊形OADC是菱形,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生到距離學校6千米的科技館去參觀,小華因事沒能乘上學校的包車,于是準備在學校門口改乘出租車去科技館,出租車收費標準有兩種類型,如下表:

里程

甲類收費(元)

乙類收費(元)

3千米以下(包含3千米)

7.00

6.00

3千米以上,每增加1千米

1.60

1.40

(1)設(shè)出租車行駛的里程為x千米(x取正整數(shù)),分別寫出兩種類型的總收費(用含x的代數(shù)式表示);

(2)小華身上僅有11元,他乘出租車到科技館車費夠不夠請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,點PAB邊上一點(不與A,B重合),連接CP,過點PPQ⊥CPAD于點Q,連接CQ。取CQ的中點M,連接MD,MP,若MD⊥MP,則AQ的長________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點,∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

同步練習冊答案