【題目】如圖所示,在△ABC中,BE平分∠ABC,DE∥BC.
(1)試猜想△BDE的形狀,并說(shuō)明理由;
(2)若∠A=35°,∠C=70°,求∠BDE的度數(shù).
【答案】(1) △BDE是等腰三角形,理由見解析;(2)∠BDE=105°
【解析】
(1)由角平分線和平行線的性質(zhì)可得到∠BDE=∠DEB,可證得結(jié)論;(2)由∠A=35°,∠C=70°可求出∠ABC=75°,然后利用角平分線和平行線的性質(zhì)可得到∠BDE=∠DEB即可求解.
(1)△BDE是等腰三角形,
理由:∵BE平分∠ABC,∴∠ABE=∠EBC,
∵DE∥BC,∴∠DEB=∠EBC=∠ABE,
∴BD=ED,
∴△DBE為等腰三角形;
(2)∵ ∠A=35°,∠C=70°,∴∠ABC=75°,
∵BE平分∠ABC,DE∥BC,∴∠DEB=∠EBC=∠ABE=37.5°,
∴∠BDE=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過(guò)點(diǎn)D作DE∥OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)D為AB中點(diǎn),延長(zhǎng)DE交x軸于點(diǎn)F,在ED的延長(zhǎng)線上取點(diǎn)G,使DG=DF,連接BG.
①BG與y軸的位置關(guān)系怎樣?說(shuō)明理由; ②求OF的長(zhǎng);
(3)如圖2,若點(diǎn)F的坐標(biāo)為(10,10),E是y軸的正半軸上一動(dòng)點(diǎn),P是直線AB上一點(diǎn),且P的橫坐標(biāo)為6,是否存在點(diǎn)E使△EFP為等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,再平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),,點(diǎn)C的坐標(biāo)為(0,3).
(1)求a,b的值;
(2)求;
(3)若點(diǎn)M在坐標(biāo)軸上,且=,直接寫出M的坐標(biāo);
(4)點(diǎn)D的坐標(biāo)為(6,5),動(dòng)點(diǎn)P在x軸上,當(dāng)△CDP試等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段a和∠EAF,點(diǎn)B在射線AE上 . 畫出△ABC,使點(diǎn)C在射線AF上,且BC=a.
(1)依題意將圖補(bǔ)充完整;
(2)如果∠A=45°,AB=,BC=5,求△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)3×3的正方形網(wǎng)格,其右下角格點(diǎn)(小正方形的頂點(diǎn))A的坐標(biāo)為(﹣1,1),左上角格點(diǎn)B的坐標(biāo)為(﹣4,4),若分布在過(guò)定點(diǎn)(﹣1,0)的直線y=﹣k(x+1)兩側(cè)的格點(diǎn)數(shù)相同,則k的取值可以是( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:內(nèi)接于,過(guò)點(diǎn)作直線,為非直徑的弦,且是的切線
求證:;
若,,連接并延長(zhǎng)交于點(diǎn),求由弧、線段和所圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王強(qiáng)與李明兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做拋骰子(正方體形狀)試驗(yàn),他們共拋了54次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如下表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 6 | 9 | 5 | 8 | 16 | 10 |
(1)請(qǐng)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為3的頻率及出現(xiàn)向上點(diǎn)數(shù)為5的頻率;
(2)王強(qiáng)說(shuō):“根據(jù)試驗(yàn),可知一次試驗(yàn)中出現(xiàn)向上點(diǎn)數(shù)為5的概率最大.”李明說(shuō):“如果拋540次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)正好是100次.”請(qǐng)判斷王強(qiáng)和李明說(shuō)法的對(duì)錯(cuò).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是的中點(diǎn),AB和DC的延長(zhǎng)線交于⊙O外一點(diǎn)E.
求證:(1)∠EBC=∠D;
(2)BC=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=20cm,BC=16cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以6cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com