先閱讀下列一段文字,然后解答問題:已知,
方程
x2+1
x
=
22+1
2
,解為x1=2,x2=
1
2

方程
x2+1
x
=
32+1
3
的解為x1=3,x2=
1
3
;
方程
x2+1
x
=
42+1
4
的解為x1=4,x2=
1
4

問題:①觀察上述方程及其解,再猜想出方程
x2+x
x
=
101
10
的解;
②請你再按照上述格式命制一個方程.
分析:首先要認(rèn)真審題,尋找規(guī)律,然后再根據(jù)規(guī)律解題.此題的規(guī)律為若
x2+1
x
=
a2+1
a
,則x1=a,x2=
1
a
解答:解:①由題意知,方程
x2+x
x
=
101
10
的解是x1=10,x2=
1
10
;
②如
x2+x
x
=
65
8
等.
點(diǎn)評:此題考查了學(xué)生的學(xué)以致用能力,解題的關(guān)鍵是仔細(xì)觀察,尋找規(guī)律,學(xué)以致用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,然后回答問題.
某運(yùn)輸部門確定:辦理托運(yùn),當(dāng)一件物品的重量不超過a千克(a<18)時,需付基礎(chǔ)費(fèi)30元和保險費(fèi)b元;為限制過重物品的托運(yùn),當(dāng)一件物品的重量超過a千克時,除了付以上基礎(chǔ)費(fèi)和保險費(fèi)外,超過部分每千克還需付c元超重費(fèi).設(shè)某件物品的重量為x千克,支付費(fèi)用為y元.
物品重量(千克) 支付費(fèi)用(元)
12 33
18 39
25 60
(1)當(dāng)0<x≤a時,y=
 
,(用含b的代數(shù)式表示);當(dāng)x>a時,y=
 
(用含x和a、b、c的代數(shù)式表示).
(2)甲、乙、丙三人各托運(yùn)了一件物品,重量與支付費(fèi)用如右表所示:①試根據(jù)以上提供的信息確定a、b、c的值,并寫出支付費(fèi)用y(元)與每件物品重量x(千克)的函數(shù)關(guān)系式.②試問在物品可拆分的情況下,用不超過120元的費(fèi)用能否托運(yùn)55千克物品?若能,請設(shè)計出一種托運(yùn)方案,并求出托運(yùn)費(fèi)用;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列一段文字,然后解答問題.
已知:方程x-
1
x
=1
1
2
的解是x1=2,x2=-
1
2
;方程x-
1
x
=2
2
3
的解是xl=3,x2=-
1
3
;
方程x-
1
x
=3
3
4
的解是xl=4,x2=-
1
4
;方程x-
1
x
=4
4
5
的解是xl=5,x2=-
1
5

問題:觀察上述方程及其解,再猜想出方程x-
1
x
=10
10
11
的解,并寫出檢驗.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,然后解答問題:
某運(yùn)輸部門規(guī)定:辦理托運(yùn),當(dāng)一種物品的重量不超過16千克時,需付基礎(chǔ)費(fèi)30元和保險費(fèi)a元;為限制過重物品的托運(yùn),當(dāng)一件物品超過16千克時,除了付以上基礎(chǔ)費(fèi)和保險費(fèi)外,超過部分每千克還需付b元超重費(fèi).設(shè)某件物品的重量為x千克.
(1)當(dāng)x≤16時,支付費(fèi)用為
 
元(用含a的代數(shù)式表示);當(dāng)x≥16時,支付費(fèi)用為
 
元(用含x和a、b的代數(shù)式表示)
(2)甲、乙兩人各托運(yùn)一件物品,物品重量和支付費(fèi)用如下表所示
物品重量(千克) 支付費(fèi)用(元)
18 39
25 60
①試根據(jù)以上提供的信息確定a,b的值.
②試問在物品可拆分的情況下,用不超過120元的費(fèi)用能否托運(yùn)50千克物品?若能,請設(shè)計出其中一種托運(yùn)方案,并求出托運(yùn)費(fèi)用;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,在回答后面的問題.
已知在平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離公式P1P2=
(x2-x1)2+(y2-y1)2
,同時,當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點(diǎn)間距離公式可簡化為|x2-x1|或|y2-y1|.
(1)已知A(2,4)、B(-3,-8),試求A、B兩點(diǎn)間的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A、B兩點(diǎn)間的距離.
(3)已知一個三角形各頂點(diǎn)坐標(biāo)為A(0,6)、B(-3,2)、C(3,2),你能判定此三角形的形狀嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列一段文字,然后解答問題
“要比較a與b的大小,可以先求出a與b的差,再看這個差是正數(shù)、負(fù)數(shù)還是零,由此可見,要比較兩個代數(shù)式的值的大小,只要考察它們的差就可以了.”
問題:比較9a2+5a+3與9a2-a-1的大。

查看答案和解析>>

同步練習(xí)冊答案