【題目】如圖,四邊形ABCD中,AD∥BC.
(1)如圖1,AB=AC,點(diǎn)E為AB上一點(diǎn),∠BEC=∠ACD.
①求證:ABBC=ADBE;
②連接BD交CE于F,試探究CF與CE的數(shù)量關(guān)系,并證明;
(2)如圖2,若AB≠AC,點(diǎn)M在CD上,cos∠DAC=cos∠BMA=,AC=CD=3MC,ADBC=12,直接寫(xiě)出BC的長(zhǎng).
【答案】(1)①見(jiàn)解析,②CE=2CF,見(jiàn)解析;(2)
【解析】
(1)①證明△BEC∽△ACD可得結(jié)論.
②結(jié)論:CE=2CF.利用相似三角形的性質(zhì)證明CM=BE,再證明△MCF≌△BEF(ASA),推出CF=EF即可解決問(wèn)題.
(2)如圖2中,作CH⊥AD于H.證明△ABC∽△AMD,可得ACDM=BCAD=12,由AC=CD=3CM,推出6CM2=12,推出CM= , ,解直角三角形求出AD即可解決問(wèn)題.
(1)①∵AD∥BC,
∴∠DAC=∠ACB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC=∠CAD,
∵∠BEC=∠ACD,
∴△BEC∽△ACD,
∴,
∴BCAC=ADBE,
∵AB=AC,
∴ABBC=ADBE.
②解:結(jié)論:CE=2CF.
理由:如圖1中,作CM∥AB交BD于M,設(shè)BD交AC于N.
∵CM∥AB,
∴∠BAN=∠MCN,∠CMN=∠ABN,
∴△MCN∽△BAN,
∴,
∵AD∥BC,
∴∠NAD=∠NCB,∠AND=∠CNB,
∴△CNB∽△AND,
∴,
∵,
∴,
∵AB=AC,
∴CM=BE,
∵CM∥BE,
∴∠CMF=∠BEF,∠BEF=∠MCF,
∴△MCF≌△BEF(ASA),
∴CF=EF,
∴CE=2CF.
(2)解:如圖2中,作CH⊥AD于H.
∵AD∥BC,
∴∠CAD=∠ACB,
∵cos∠DAC=cos∠BMA,
∴∠DAC=∠AMB,
∴∠AMB=∠ACB,
∴A,B,C,M四點(diǎn)共圓,
∴∠BAC=∠BMC,
∵CA=CD,
∴∠CAD=∠D=∠AMB,
∵∠AMC=∠MAD+∠D=∠BMA+∠BMC,
∴∠BMC=∠MAD,
∴∠BAC=∠MAD
∵∠ACB=∠AMB=∠D,
∴△ABC∽△AMD,
∴,
∴ACDM=BCAD=12,
∵AC=CD=3CM,
∴6CM2=12,
∵CM>0,
∴CM=,
∴,
∵CH⊥AD,
∴AH=DH,
∵,
∴, ,
∵BCAD=12,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中.拋物線(xiàn)y=﹣x2+4x+3與y軸交于點(diǎn)A,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)B,連接AB,將△OAB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△O'A'B.
(1)用配方法求拋物線(xiàn)的對(duì)稱(chēng)軸并直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,當(dāng)點(diǎn)A'第一次落在拋物線(xiàn)上時(shí),∠O'BO=n∠OAB,請(qǐng)直接寫(xiě)出n的值;
(3)如圖2,當(dāng)△OAB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,直線(xiàn)A'O'交x軸于點(diǎn)M,求△A'MB的面積;
(4)在旋轉(zhuǎn)過(guò)程中,連接OO',當(dāng)∠O'OB=∠OAB時(shí).直線(xiàn)A'O'的函數(shù)表達(dá)式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD 是菱形ABCD 的對(duì)角線(xiàn),∠A=30°.
(1)請(qǐng)用尺規(guī)作圖法,作AB 的垂直平分線(xiàn)EF,垂足為E,交AD 于F;(不要 求寫(xiě)作法,保留作圖痕跡)
(2)在(1)的條件下,連接BF,求∠DBF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線(xiàn)CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線(xiàn)段BE與DE之間的數(shù)量關(guān)系,寫(xiě)出你的猜想并加以證明.
(3)當(dāng)點(diǎn)D為邊CB延長(zhǎng)線(xiàn)上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線(xiàn)段BE與DE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線(xiàn),點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線(xiàn)段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線(xiàn)學(xué)習(xí)已經(jīng)成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類(lèi)在線(xiàn)學(xué)習(xí)方式:在線(xiàn)閱讀、在線(xiàn)聽(tīng)課、在線(xiàn)答題和在線(xiàn)討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類(lèi)在線(xiàn)學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線(xiàn)討論”對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生2700人,請(qǐng)你估計(jì)該校對(duì)在線(xiàn)閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新能源汽車(chē)環(huán)保節(jié)能,越來(lái)越受到消費(fèi)者的喜愛(ài).各種品牌相繼投放市場(chǎng).一汽貿(mào)公司經(jīng)銷(xiāo)某品牌新能源汽車(chē).去年銷(xiāo)售總額為5000萬(wàn)元,今年1~5月份,每輛車(chē)的銷(xiāo)售價(jià)格比去年降低1萬(wàn)元.銷(xiāo)售數(shù)量與去年一整年的相同.銷(xiāo)售總額比去年一整年的少20%,今年1~5月份每輛車(chē)的銷(xiāo)售價(jià)格是多少萬(wàn)元?設(shè)今年1~5月份每輛車(chē)的銷(xiāo)售價(jià)格為x萬(wàn)元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1,D1E1E2B2,A2B2C2D2,D2E3E4B3,A3B3C3D3…,按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1,E1,E2,C2,E3,E4,C3,…,在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……,則正方形A2018B2018C2018D2018邊長(zhǎng)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張華為了測(cè)量重慶最高塔樓的高度,他從塔樓底部出發(fā),沿廣場(chǎng)前進(jìn)185米至點(diǎn),繼而沿坡度為的斜坡向下走65米到達(dá)碼頭,然后在浮橋上繼續(xù)前行110米至躉船,在處小明操作一架無(wú)人勘測(cè)機(jī),當(dāng)無(wú)人勘測(cè)機(jī)飛行至點(diǎn)的正上方點(diǎn)時(shí),測(cè)得碼頭的俯角為,樓頂的仰角為,點(diǎn)在同一平面內(nèi),則塔樓的高度約為( )(結(jié)果精確到1米,參考數(shù)據(jù):,,)
A.319米B.335米C.342米D.356米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com