(2013•莆田)如圖,?ABCD中,AB=2,以點(diǎn)A為圓心,AB為半徑的圓交邊BC于點(diǎn)E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點(diǎn)E,求圖中陰影部分(扇形)的面積.
分析:(1)由四邊形ABCD是平行四邊形,AB=AE,易證得四邊形AECD是等腰梯形,即可得AC=DE,然后由SSS,即可證得:△AED≌△DCA;
(2)由DE平分∠ADC且與⊙A相切于點(diǎn)E,可求得∠EAD的度數(shù),繼而求得∠BAE的度數(shù),然后由扇形的面積公式求得陰影部分(扇形)的面積.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∴四邊形AECD是梯形,
∵AB=AE,
∴AE=CD,
∴四邊形AECD是等腰梯形,
∴AC=DE,
在△AED和△DCA中,
AE=DC
DE=AC
AD=DA
,
∴△AED≌△DCA(SSS);

(2)解:∵DE平分∠ADC,
∴∠ADC=2∠ADE,
∵四邊形AECD是等腰梯形,
∴∠DAE=∠ADC=2∠ADE,
∵DE與⊙A相切于點(diǎn)E,
∴AE⊥DE,
即∠AED=90°,
∴∠ADE=30°,
∴∠DAE=60°,
∴∠DCE=∠AEC=180°-∠DAE=120°,
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠DCE=120°,
∴∠BAE=∠BAD-∠EAD=60°,
∴S陰影=
60
360
×π×22=
2
3
π.
點(diǎn)評(píng):此題考查了切線(xiàn)的性質(zhì)、全等三角形的判定與性質(zhì)、等腰梯形的判定與性質(zhì)以及平行四邊形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到△AB1C1的位置,使得點(diǎn)C、A、B1在同一條直線(xiàn)上,那么旋轉(zhuǎn)角等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖,一次函數(shù)y=(m-2)x-1的圖象經(jīng)過(guò)二、三、四象限,則m的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖是一株美麗的勾股樹(shù),其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面積分別為2,5,1,2.則最大的正方形E的面積是
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖所示,某學(xué)校擬建一個(gè)含內(nèi)接矩形的菱形花壇(花壇為軸對(duì)稱(chēng)圖形).矩形的四個(gè)頂點(diǎn)分別在菱形四條邊上,菱形ABCD的邊長(zhǎng)AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,四個(gè)三角形內(nèi)種植黃色花草.已知紅色花草的價(jià)格為20元/米2,黃色花草的價(jià)格為40元/米2.當(dāng)x為何值時(shí),購(gòu)買(mǎi)花草所需的總費(fèi)用最低,并求出最低總費(fèi)用(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖,拋物線(xiàn)y=ax2+bx+c的開(kāi)口向下,與x軸交于點(diǎn)A(-3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線(xiàn)的解析式;
②將拋物線(xiàn)向右平移,使得平移后的拋物線(xiàn)與原拋物線(xiàn)交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線(xiàn)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案