【題目】如圖直線yx+3與坐標(biāo)軸分別交于A,B兩點(diǎn)拋物線yax2bx-3a經(jīng)過(guò)點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱

(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo)

(2)求證四邊形ABCD是直角梯形

【答案】(1)y=-x2-2x+3,頂點(diǎn)C的坐標(biāo)為(-1,4);(2)證明見(jiàn)解析.

【解析】

1)解:∵yx3與坐標(biāo)軸分別交與AB兩點(diǎn),∴A點(diǎn)坐標(biāo)(-3,0)、B點(diǎn)坐標(biāo)(03.

拋物線yax2bx3a經(jīng)過(guò)A,B兩點(diǎn),

解得

拋物線解析式為:y=-x22x3.

∵y=-x22x3=-(x124

頂點(diǎn)C的坐標(biāo)為(-1,4.

2)證明:∵BD關(guān)于MN對(duì)稱,C(-14),B0,3),

∴D(-2,3.∵B03),A(-30),∴OAOB.

∠AOB90°,∴∠ABO∠BAO45°.

∵BD關(guān)于MN對(duì)稱,∴BD⊥MN.

∵M(jìn)N⊥x軸,∴BD∥x.

∴∠DBA∠BAO45°.

∴∠DBO∠DBA∠ABO45°45°90°.

設(shè)直線BC的解析式為ykxb

B0,3),C(-1,4)代入得,

解得

∴y=-x3.

當(dāng)y0時(shí),-x30x3,∴E3,0.

∴OBOE,又∵∠BOE90°,

∴∠OEB∠OBE∠BAO45°.

∴∠ABE180°∠BAE∠BEA90°.

∴∠ABC180°∠ABE90°.

∴∠CBD∠ABC∠ABD45°.

∵CM⊥BD,∴∠MCB45°.

∵BD關(guān)于MN對(duì)稱,

∴∠CDM∠CBD45°,CD∥AB.

∵ADBC不平行,四邊形ABCD是梯形.

∵∠ABC90°,四邊形ABCD是直角梯形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個(gè)行駛過(guò)程中,甲、乙兩車離開(kāi)A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①AB兩城相距300千米;②乙車比甲車晚出發(fā)1小時(shí),卻早到1小時(shí);③乙車出發(fā)后2.5小時(shí)追上甲車;④當(dāng)甲、乙兩車相距50千米時(shí),t.其中正確的是________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張三角形紙片ABC,其中BAC=60°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn),將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對(duì)應(yīng)),點(diǎn)D從點(diǎn)B運(yùn)動(dòng)至點(diǎn)C,△B′C′D面積的大小變化情況是(  )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB=CD.

(1)如圖(1),求證:AD∥BC;

(2)如圖(2),點(diǎn)F是AC的中點(diǎn),弦DG∥AB,交BC于點(diǎn)E,交AC于點(diǎn)M,求證:AE=2DF;

(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)CAD上,CB平行于x軸交雙曲線于點(diǎn)B,直線ABy軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).

(1)求該雙曲線的解析式;

(2)求△OFA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣10),對(duì)稱軸為直線,下列結(jié)論:①;;;④當(dāng)時(shí), 的增大而增大.其中正確的結(jié)論有(  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.若該二次函數(shù)圖象上有一點(diǎn)D(x,y),使SABD=SABC,則D點(diǎn)的坐標(biāo)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點(diǎn),且AE=BC,過(guò)點(diǎn)AADCA,垂足為A,且AD=ACAB、DE交于點(diǎn)F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案