【題目】如圖,△ABC為等邊三角形,D、E分別是AC、BC上的點,且AD=CE,AE與BD相交于點P,BF⊥AE于點F,BP=8,則PF=
【答案】4.
【解析】
根據(jù)等邊三角形的性質(zhì)可得AC=BC,∠BAD=∠C=60°,然后利用“邊角邊”證明△ABD和△CAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠ABD=∠CAE,然后求出∠BPF=∠BAC=60°,再根據(jù)直角三角形兩銳角互余求出∠PBF=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答.
∵△ABC為等邊三角形,
∴AC=BC,∠BAD=∠C=60°,
在△ABD和△CAE中,
∴△ABD≌△CAE(SAS),
∴∠ABD=∠CAE,
∴∠BPF=∠BAP+∠ABD=∠BAP+∠CAE=∠BAC=60°,
∵BF⊥AE,
∴∠BFP=90°,
∴∠PBF=90°-60°=30°,
∴PF=BP=×8=4.
故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點、分別在邊、上,如果,且,那么下列說法中,錯誤的是( )
A. △ADE∽△ABC B. △ADE∽△ACD
C. △ADE∽△DCB D. △DEC∽△CDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c過點A(﹣4,﹣3),與y軸交于點B,對稱軸是x=﹣3,請解答下列問題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點,點C在對稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=﹣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設(shè)點D、E運動的時間是t秒過點D作于點F,連接DE、EF.
求證:;
四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
當t為何值時,為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學(xué)生各自隨機選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學(xué)生在同一餐廳用餐的概率;
(2)甲、乙兩名學(xué)生至少有一人在B餐廳的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠B的平分線BD,交AC于點D;
(2)作線段AB的垂直平分線EF,交AB于點E,交AC于點F;
(3)如果點F與點D重合,則∠A= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先列出下列問題中的函數(shù)表達式,再指出它們各屬于什么函數(shù).
電壓為時,電阻與電流的函數(shù)關(guān)系;
食堂每天用煤,用煤總量與用煤天數(shù)(天)的函數(shù)關(guān)系;
積為常數(shù)的兩個因數(shù)與的函數(shù)關(guān)系;
杠桿平衡時,阻力為,阻力臂長為,動力與動力臂的函數(shù)關(guān)系(杠桿本
身所受重力不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某幼兒園有一道長為米的墻,計劃用米長的圍欄利用一面墻如圖圍成一個矩形草坪.設(shè)該矩形草坪邊的長為米,面積為平方米.
求出與的函數(shù)關(guān)系式并寫出的取值范圍;
如果所圍成的矩形草坪面積為平方米,試求邊的長;
按題目的設(shè)計要求,________(填“能”或“不能”)圍成面積為平方米的矩形草坪.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com