【題目】如圖,AB是⊙O的直徑,AB=8,點M在⊙O上,∠MAB=40°,N是弧MB的中點,P是直徑AB上的一動點,PM+PN的最小值為( )

A.4 +1
B.4
C.4 +1
D.5

【答案】B
【解析】解:作點N關于AB的對稱點C,連接MC交AB于點P,則P點就是所求作的點.
此時PM+PN最小,且等于MC的長.
連接OM,OC,

∵∠MAB=40°,
∴∠MOB=80°,
的度數(shù)是80°,
的度數(shù)是40°,
根據(jù)垂徑定理得 的度數(shù)是40°,
則∠NOC=120°,
∵AB=8
∴OM=OC=4,
∴∠OAM=∠OMC=30°,
∴MC=4
∴PM+PN的最小值為4 ,
故選B.
作點N關于AB的對稱點C,連接MC交AB于點P,則P點就是所求作的點,求出∠COM=120°,進而求出CM的長,CM的長度即PM+PN的最小值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:(﹣1)2017﹣(2﹣ 0+
(2)化簡:(x﹣y)2﹣(x﹣2y)(x+y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC在平面內(nèi)繞點A旋轉到△AB′C′的位置,使CC′∥AB,則旋轉角的度數(shù)為(
A.35°
B.40°
C.50°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級,并依據(jù)測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖;
(1)這次抽取的學生的人數(shù)是;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中C等級所對應的圓心角為度;
(4)該校九年級學生有1500人,請你估計其中A等級的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年4月23日,是第16個世界讀書日.某校為了解學生每周課余自主閱讀的時間,在本校隨機抽取若干名學生進行問卷調(diào)查,現(xiàn)將調(diào)查結果繪制成如圖不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題

組別

學習時間x(h)

頻數(shù)(人數(shù))

A

0<x≤1

8

B

1<x≤2

24

C

2<x≤3

32

D

3<x≤4

n

E

4小時以上

4


(1)表中的n= , 中位數(shù)落在組,扇形統(tǒng)計圖中B組對應的圓心角為°;
(2)請補全頻數(shù)分布直方圖;
(3)該校準備召開利用課余時間進行自主閱讀的交流會,計劃在E組學生中隨機選出兩人進行經(jīng)驗介紹,已知E組的四名學生中,七、八年級各有1人,九年級有2人,請用畫樹狀圖法或列表法求抽取的兩名學生都來自九年級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結論:①tan∠CAE= ﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=SAPF . 正確的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數(shù);
(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黔東南州某中學為了解本校學生平均每天的課外學習實踐情況,隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結果分為A,B,C,D四個等級,設學生時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學生?并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查中,學習時間的中位數(shù)落在哪個等級內(nèi)?
(3)表示B等級的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調(diào)查中,甲班有2人平均每天課外學習時間超過2小時,乙班有3人平均每天課外學習時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

同步練習冊答案