(2013•鎮(zhèn)江)如圖,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,則∠B=
50
50
°.
分析:由∠BAC=60°,可得出∠EAC的度數(shù),由AD平分∠EAC,可得出∠EAD的度數(shù),再由AD∥BC,可得出∠B的度數(shù).
解答:解:∵∠BAC=80°,
∴∠EAC=100°,
∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC=50°,
∵AD∥BC,
∴∠B=∠EAD=50°.
故答案為:50.
點評:本題考查了平行線的性質(zhì),解答本題的關(guān)鍵是掌握角平分線的性質(zhì)及平行線的性質(zhì):兩直線平行內(nèi)錯角、同位角相等,同旁內(nèi)角互補.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,則五邊形ABCDE的面積等于
13
3
4
13
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,A、B、C是反比例函數(shù)y=
k
x
(x<0)
圖象上三點,作直線l,使A、B、C到直線l的距離之比為3:1:1,則滿足條件的直線l共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0).
(1)寫出拋物線的對稱軸與x軸的交點坐標(biāo);
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小;
(3)點B(-1,2)在該拋物線上,點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.

查看答案和解析>>

同步練習(xí)冊答案