【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:

Sin(α±β)=sinαcosβ±cosαsinβ ; tan(α±β)=

利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值

例:tan15°=tan(45°30°)==

根據(jù)以上閱讀材料,請選擇適當(dāng)?shù)墓酱鸢赶旅娴膯栴}

(1)計算sin15°;

(2)棲靈塔是揚州市標(biāo)志性建筑之一(如圖),小明想利用所學(xué)的數(shù)學(xué)知識來測量該塔的高度,小華站在離塔底A距離7米的C,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC1.62,請幫助小華求出該信號塔的高度.(精確到0.1,參考數(shù)據(jù):≈1.732,≈1.414)

【答案】(1);(2)信號塔AB的高度約為27.7

【解析】

(1)把15°化為45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計算,即可求出sin15°的值;

(2)先根據(jù)銳角三角函數(shù)的定義求出BE的長,再根據(jù)AB=AE+BE即可得出結(jié)論.

(1)sin15°=sin(45°30°)=sin45°cos30°cos45°sin30°=

(2)RTBDE中,DE=AC=7,

BDE=75°,

tanBDE=BEDE,

BE=DEtanBDE=DEtan75°

tan75°=tan(45°+30°)==

BE=7()≈26.12,

∴信號塔AB的高度≈26.12+1.62≈27.7(),

答:該信號塔AB的高度約為27.7米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,、分別在、上,且,相交于點相交于點

1)求證:四邊形為矩形;

2)判斷四邊形是什么特殊四邊形?并說明理由;

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行“行動起來,對抗霧霾”為主題的植樹活動,某街道積極響應(yīng),決定對該街道進(jìn)行綠化改造,共購進(jìn)甲、乙兩種樹共50棵,已知甲樹每棵800元,乙樹每棵1200元.

1)若購買兩種樹的總金額為56000元,求甲、乙兩種樹各購買了多少棵?

2)若購買甲樹的金額不少于購買乙樹的金額,至少應(yīng)購買甲樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD,AB=2,AD=3,EAB的中點,FAD邊上的一個動點,AEF沿EF所在直線翻折,得到A′EF,A′C的長的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張規(guī)格、質(zhì)地相同的卡片,它們背面完全相同,正面圖案分別是A 菱形,B 平行四邊形,C 線段,D 角,將這四張卡片背面朝上洗勻后

(1)隨機抽取一張卡片圖案是軸對稱圖形的概率是    ;

(2)隨機抽取兩張卡片(不放回),求兩張卡片卡片圖案都是中心對稱圖形的概率,并用樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若圓的一條弦把圓分成度數(shù)比為1:4的兩段弧,則弦所對的圓周角等于(  )

A. 36° B. 72° C. 36°144° D. 72°108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,,,高,則BC的長是( )

A.14B.4C.414D.713

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手機可以通過“個人熱點”功能實現(xiàn)移動網(wǎng)絡(luò)共享,小明和小亮準(zhǔn)備到操場上測試個人熱點連接的有效距離,他們從相距,兩地相向而行.圖中,分別表示小明、小亮兩人離地的距離與步行時間之間的函數(shù)關(guān)系,其中的關(guān)系式為.根據(jù)圖象回答下列問題:

1)請寫出的關(guān)系式___________;

2)小明和小亮出發(fā)后經(jīng)過了多長時間相遇?

3)如果手機個人熱點連接的有效距離不超過,那么他們出發(fā)多長時間才能連接成功?連接持續(xù)了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向有一艘小船停在點P,A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.

查看答案和解析>>

同步練習(xí)冊答案