【題目】如圖,點是等邊內(nèi)一點,,將繞點按順時針方向旋轉(zhuǎn)60°得,連接,若,則的度數(shù)為__________.

【答案】100°

【解析】

設(shè)∠BOC=α,根據(jù)旋轉(zhuǎn)前后圖形不發(fā)生變化,易證COD是等邊三角形,從而利用α分別表示出∠AOD與∠ADO,再根據(jù)等腰AOD的性質(zhì)求出α

設(shè)∠BOC=α,根據(jù)旋轉(zhuǎn)的性質(zhì)知,BOC≌△ADC,則OC=DC,∠BOC=ADC=α

又∵△BOC繞點C按順時針方向旋轉(zhuǎn)60°得到ADC

∴∠OCD=60°,

∴△OCD是等邊三角形,

∴∠COD=CDO=60°

OD=AD,

∴∠AOD=DAO

∵∠AOD=360°-130°-60°-α=170°-α,∠ADO=α-60°,

170°-α+α-60°=180°

解得α=100°

故答案是:100°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量一棵樹CD的高度,測量者在B處立了一根高為2.5m的標桿,觀測者從E處可以看到桿頂A,樹頂C在同一條直線上,若測得BD7m,FB3mEF1.6m,則樹高為_____m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;

2)求銷售單價為多少元時,該文具每天的銷售利潤最大;最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是⊙O的直徑,半徑OA⊥弦BC,垂足為D,連接AE、EC

1)若∠AEC25°,求∠AOB的度數(shù);

2)若∠A=∠B,EC4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在教學樓A處分別觀測對面實驗樓CD底部的俯角為45°,頂部的仰角為37°,已知教學樓和實驗樓在同一平面上,觀測點距地面的垂直高度AB15m,求實驗樓的垂直高度即CD長(精確到1m).

參考值:sin37°=0.60,cos37°=0.80,tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi),已知點的坐標,點位置如圖所示,點與點關(guān)于原點對稱。

1)在圖中描出點;寫出圖中點的坐標:______________,點的坐標:_______________;

2)畫出關(guān)于軸的對稱圖形,并求出四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形中,為對角線,點在邊上,點在邊上,、分別交于點、,,,則__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西汾酒,又稱“杏花村酒”.釀造汾酒是選用晉中平原的“一把抓高粱”為原料.汾陽縣某村民合作社2016年種植“一把抓高粱”100畝,2018年該合作社擴大了“一把抓高梁”的種植面積,共種植144.

1)求該合作社這兩年種植“一把抓高梁”畝數(shù)的平均增長率;

2)某糧店銷售“一把抓高粱”售價為13/斤,每天可售出30斤,每斤的盈利是1.5.為了減少庫存,糧店決定搞促銷活動.在銷售中發(fā)現(xiàn):售價每降價0.1元,則可多售出2.若該糧店某天銷售“一把抓高梁”的盈利為40元,則該店當天銷售單價降低了多少元?

查看答案和解析>>

同步練習冊答案