【題目】已知數(shù)軸上有A. B.C三點,分別表示有理數(shù)26,10,10,動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設(shè)點P移動時間為t秒。
(1)PA= ,PC= (用含t的代數(shù)式表示)
(2)當(dāng)點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動,Q點到達(dá)C點后,再立即以同樣的速度返回,當(dāng)點P運動到點C時,P、Q兩點運動停止,
①當(dāng)P、Q兩點運動停止時,求點P和點Q的距離;
②求當(dāng)t為何值時P、Q兩點恰好在途中相遇.
【答案】(1)t;36-t;(2)①24;②30.
【解析】
(1)利用數(shù)軸上兩點的距離公式求出AC的長度,根據(jù)路程=速度×?xí)r間,用t表示出AP,
再利用PC=AC-AP即可;
(2)①先利用數(shù)軸上兩點的距離公式求出BC的長度,再利用時間=路程÷速度算出P從B運動到C的時間,算出Q的運動路程,最后減去AC即可;
②先利用AB的長度算出Q比P晚出發(fā)的時間,再利用P和Q運動總路程等于兩個AC的長度列方程即可.
解:(1)由數(shù)軸可知:AC=10-(﹣26)=36個單位長度
∵動點P從A出發(fā),以每秒1個單位的速度向終點C移動
PA=t,PC=36-t;
(2)①由數(shù)軸可知:BC=10-(﹣10)=20個單位長度,
∴P從B運動到C的時間為:20÷1=20s
∵當(dāng)點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動
∴當(dāng)P從B運動到C時,Q的運動時間也是20s
∴Q的運動路程為:20×3=60個單位長度,
∵此時P在C處
∴QP=QC=60-AC=60-36=24.
②由數(shù)軸可知:AB=(﹣10)-(﹣26)=16個單位長度,
∵當(dāng)點P運動到B點時,點Q從A點出發(fā),
∴Q比P晚出發(fā)了:16÷1=16s
故Q的運動時間為(t-16)s,
由圖可知:P和Q運動總路程等于兩個AC的長度
∴t+3(t-16)=2×36
解得:t=30
答:當(dāng)t等于30時,P、Q兩點恰好在途中相遇
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個.隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中A(0,a)、B(b,0),且滿足4(a﹣2)2+(b﹣4)2=0,點P(m,m)在線段AB上
(1)求A、B的坐標(biāo);
(2)如圖1,若過P作PC⊥AB交x軸于C,交y軸交于點D,求的值;
(3)如圖2,以AB為斜邊在AB下方作等腰直角△ABC,CG⊥OB于G,設(shè)I是∠OAB的角平分線與OP的交點,IH⊥AB于H.請?zhí)骄?/span>的值是否發(fā)生改變,若不改變請求其值;若改變請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.
(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?
(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用1 000元購進(jìn)一批“晨光”套尺,很快銷售一空;商店又用1 500元購進(jìn)第二批該款套尺,購進(jìn)時單價是第一批的倍,所購數(shù)量比第一批多100套.
(1)求第一批套尺購進(jìn)時單價是多少?
(2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BO、CO分別是∠ABC和∠ACB的平分線,OE∥AB,OF∥AC,如果已知BC的長為a,你能知道△OEF的周長嗎?算算看.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,P為BC邊上任意一點,PF⊥AB于F,PE⊥AC于E,若AC邊上的高BD=a.
(1)試說明PE+PF=a;
(2)若點P在BC的延長線上,其它條件不變,上述結(jié)論還成立嗎?如果成立請說明理由;如果不成立,請重新給出一個關(guān)于PE,PF,a的關(guān)系式,不需要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索發(fā)現(xiàn):
(1)計算:當(dāng)a 4, b 3時, a2 b2 ; (a b)(a b) 。
當(dāng)a 1, b 2 時, a2 b2 ; (a b)(a b) 。
(2)你能從上面的計算中發(fā)現(xiàn)什么結(jié)論? 。
(3)利用你發(fā)現(xiàn)的結(jié)論,求 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的數(shù)集中:
+1、-5%、200、-3、6.8、0、-、0.12003407、1、-43.555、77%、-3
(1)非負(fù)數(shù)集合:______________________(2)負(fù)有理數(shù)集合:________________________
(3)正整數(shù)集合:______________________(4)負(fù)分?jǐn)?shù)集合:___________________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com