【題目】若點Px軸上,點A1,1),O是坐標(biāo)原點,且△AOP是等腰三角形,則點P的坐標(biāo)是________

【答案】(2 0),(,0),(10)或(-,0);

【解析】

此題沒有說明是那兩條邊為腰長,所以要分類討論從而求解.

:(1)當(dāng)點Px軸正半軸上,

OA為腰時,

A的坐標(biāo)是(1,1),

∵∠AOP= 45°,OA= ,

P的坐標(biāo)是(2, 0)(,0)

OA為底邊時,

∵點A的坐標(biāo)是(11),

∴當(dāng)點P的坐標(biāo)為:(1,0)時,OP= AP;

(2)當(dāng)點Px軸負(fù)半軸上,

OA為腰時,

A的坐標(biāo)是(1,1),

OA=,

OA= OP=,

P的坐標(biāo)是(-,0),

綜上:P的坐標(biāo)是(2, 0),(,0),(1,0)或(-0);

故答案為:(2 0),(0),(1,0)或(-,0);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實驗與游戲.

1)在實驗中他們共做了50次試驗,試驗結(jié)果如下:

朝上的點數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

10

9

6

9

8

8

填空:此次實驗中,“1點朝上的頻率是 ;

小亮說:根據(jù)試驗,出現(xiàn)1點朝上的概率最大.他的說法正確嗎?為什么?

2)小明也做了大量的同一試驗,并統(tǒng)計了“1點朝上的次數(shù),獲得的數(shù)據(jù)如下表:

試驗總次數(shù)

100

200

500

1000

2000

5000

10000

1點朝上的次數(shù)

18

34

82

168

330

835

1660

1點朝上的頻率

0.180

0.170

0.164

0.168

0.165

0.167

0.166

“1點朝上的概率的估計值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是中線,EAD的中點,過點AAFBCBE的延長線于F,連接CF

1)求證:ADAF;

2)如果ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C三點在同一條數(shù)軸上.

(1)、若點A,B表示的數(shù)分別為-42,且BC=AB,則點C表示的數(shù)是 ;

(2)、點AB表示的數(shù)分別為m,n,且mn

ACAB=2,求點C表示的數(shù)(用含m,n的式子表示);

D是這條數(shù)軸上的一個動點,且點D在點A的右側(cè)(不與點B重合),當(dāng)AD=2ACBC=BD,求線段AD的長(用含mn的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離家的距離s(千米)與時間t(時)之間的函數(shù)關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:

1)小李到達(dá)離家最遠(yuǎn)的地方的時間是14時;

2)小李第一次休息時間是10時;

311時到12時,小李騎了5千米;

4)返回時,小李的平均車速是10千米/時.

其中,正確的信息有___________________(填番號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD8,E是邊AB上一點,且AEABO經(jīng)過點E,與邊CD所在直線相切于點GGEB為銳角),與邊AB所在直線交于另一點F,且EGEF.當(dāng)邊ADBC所在的直線與O相切時,AB的長是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE1,DE3,∠EFB′=60°,則矩形ABCD的面積是(  )

A.4B.8C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車租賃公司準(zhǔn)備購買A,B兩種型號的新能源汽車10.汽車廠商提供了如下兩種購買方案:

(1)A,B兩種型號的新能源汽車每輛的價格各是多少萬元?

(2)為了支持新能源汽車產(chǎn)業(yè)的發(fā)展,國家對新能源汽車發(fā)放一定的補貼.已知國家對A, B兩種型號的新能源汽車補貼資金分別為每輛3萬元和4萬元.通過測算,該汽車租賃公司在此次購車過程中,可以獲得國家補貼資金不少于34萬元,公司需要支付資金不超過145萬元,請你通過計算求出有幾種購買方案.

查看答案和解析>>

同步練習(xí)冊答案