【題目】如圖,在ABCD中,E、F是對角線BD上的兩點,BEDF,點G、H分別在BADC的延長線上,且AGCH,連接GEEH、HF、FG

求證:(1)BEG≌△DFH;

(2)四邊形GEHF是平行四邊形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)利用平行四邊形的性質(zhì)得出BG=DH,進而利用SAS得出BEG≌△DFH;

2)利用全等三角形的性質(zhì)得出∠GEF=HFB,進而得出答案.

(1)∵四邊形ABCD是平行四邊形,

ABCDABDC

∴∠ABE=∠CDF,

AGCH,

BGDH,

BEGDFH中,

∴△BEG≌△DFH(SAS);

(2)∵△BEG≌△DFH(SAS),

∴∠BEG=∠DFH,EGFH,

∴∠GEF=∠HFB

GEFH,

∴四邊形GEHF是平行四邊形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣kx﹣2=0.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)已知方程的一個根為x=+1,求k的值及另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一些相同的“○”按如圖所示的規(guī)律依次擺放,觀察每個龜圖中的“○”的個數(shù),若第n龜圖中有245“○”,則n=( )

A. 14 B. 15 C. 16 D. 17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:如圖,點A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點之間的距離可以表示為|a﹣b|.

根據(jù)閱讀材料與你的理解回答下列問題:

(1)數(shù)軸上表示3與﹣2的兩點之間的距離是   .

(2)數(shù)軸上有理數(shù)x與有理數(shù)7所對應兩點之間的距離用絕對值符號可以表示為  .

(3)代數(shù)式|x+8|可以表示數(shù)軸上有理數(shù)x與有理數(shù)   所對應的兩點之間的距離;若|x+8|=5,則x=      .

(4)求代數(shù)式|x+1008|+|x+504|+|x﹣1007|的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M,N分別是斜邊AB,DE的中點,點PAD的中點,連接AEBD、MN

(1)求證:△PMN為等腰直角三角形;

(2)現(xiàn)將圖中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α90°),得到圖AEMP,BD分別交于點G、H,請判斷中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林同學積極參加體育鍛煉,天天堅持跑步,他每天以1000m為標準,超過的記作正數(shù),不足的記作負數(shù).下表是一周內(nèi)小明跑步情況的記錄(單位:m)

星期

跑步情況(m)

+420

+460

-100

-210

-330

+200

-240

(1)星期三小林跑了_____

(2)小林在跑得最少的一天跑了______?跑得最多的一天比最少的一天多跑了_____?

(3)若小林跑步的平均速度為240/分,求本周內(nèi)小明用于跑步的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是格點三角形(各頂點是網(wǎng)格線的交點), 每個小方格都是邊長為1個單位長度的小正方形.

1)將ABC向右平移6個單位長度,畫出平移后的A1B1C1

2)將平移后的A1B1C1繞點B1順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的A2B1C2

3)將ABC沿直線BC翻折,畫出翻折后的A3BC.

4)試問ABC能否經(jīng)過一次旋轉(zhuǎn)后與A2B1C2重合,若能,請在圖中用字母O表示旋轉(zhuǎn)中心并寫出旋轉(zhuǎn)角的大小;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,二次函數(shù)y=mx2m+nx+nm0)的圖象與y軸正半軸交于A點.

1)求證:該二次函數(shù)的圖象與x軸必有兩個交點;

2)設(shè)該二次函數(shù)的圖象與x軸的兩個交點中右側(cè)的交點為點B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;

3)在(2)的條件下,設(shè)Mp,q)為二次函數(shù)圖象上的一個動點,當﹣3p0時,點M關(guān)于x軸的對稱點都在直線l的下方,求m的取值范圍.

查看答案和解析>>

同步練習冊答案