下列運(yùn)算中正確的是( 。
A.a(chǎn)2+a3=a5 B.a(chǎn)2•a4=a8 C.a(chǎn)6÷a2=a3 D.(a2)3=a6
D【考點(diǎn)】同底數(shù)冪的除法;合并同類項(xiàng);同底數(shù)冪的乘法;冪的乘方與積的乘方.
【分析】根據(jù)合并同類項(xiàng)、同底數(shù)冪的除法、冪的乘方以及同底數(shù)冪的乘法的性質(zhì),即可求得答案.
【解答】解:A、a2+a3不是同類項(xiàng)不能合并,故錯(cuò)誤;
B、a2•a4=a6,故錯(cuò)誤;
C、a6÷a2=a4,故錯(cuò)誤;
D、(a2)3=a6,故正確.
故選D.
【點(diǎn)評】此題考查了合并同類項(xiàng)、同底數(shù)冪的除法、冪的乘方以及同底數(shù)冪的乘法的性質(zhì).此題比較簡單,注意掌握指數(shù)的變化是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為⊙O的直徑,AD為弦,∠DBC=∠A.
(1)求證:BC是⊙O的切線;
(2)連接OC,如果OC恰好經(jīng)過弦BD的中點(diǎn)E,且tanC=,AD=3,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣1,則另一個(gè)根為( )
A.﹣2 B.2 C.4 D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點(diǎn)E,AB、DC的延長線相交于點(diǎn)F.若∠E+∠F=80°,則∠A= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,三角形ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A (1,2)、B(4,3)、C(3,1).
(1)將△ABC先向右平移2個(gè)單位長度,再向下平移3個(gè)單位長度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′( 、 )、B′( 、 )、C′( 、 );并畫出平移后的圖形.
(2)求△ABC的面積.(本小題必須寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在半徑為2,圓心角為90°的扇形內(nèi),以BC為直徑作半圓,交弦AB于點(diǎn)D,連接CD,則陰影部分的面積為( )
A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com