【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC90°,直線為⊙P的切線.

試說明:2B+∠DAB180°

若∠B30°,AD2,求⊙P的半徑.

【答案】(1)證明見解析;(2)4.

【解析】

1)根據(jù)切線的性質(zhì)和圓周角定理,以及平行線的性質(zhì)即可得到結(jié)論;

2)連接AC,易證ACP是等邊三角形,得到ACD30°即可求出半徑.

解:連接CP

PCPB,∴∠BPCB,

∴∠APCPCBB2∠B

CDOP的切線,∴∠DCP90°

∵∠ADC90°,∴∠DABAPC180°

∴2∠BDAB180°

連接AC

∵∠B30°∴∠APC60°,

PCPA∴△ACP是等邊三角形,ACPA,ACP60°

∴∠ACD30°,AC2AD4PA4

答:P的半徑為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4BC=3,矩形在直線l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖位置,,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是( )

A.2015πB.3019C.3018πD.3024π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)D坐標(biāo)并直接寫出y1y2時(shí)x的取值范圍;

(3)動(dòng)點(diǎn)Px,0)x軸的正半軸上運(yùn)動(dòng)當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,拋物線的頂點(diǎn)在折線上運(yùn)動(dòng).

1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),拋物線軸交點(diǎn)坐標(biāo)為.

①用含的代數(shù)式表示.

②求的取值范圍.

2)當(dāng)拋物線與的邊有三個(gè)公共點(diǎn)時(shí),試求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直線BC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的底面圓周長

(2)以直線AC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的側(cè)面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC90°,直線為⊙P的切線.

試說明:2B+∠DAB180°

若∠B30°,AD2,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:

根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:連接OA,OBOC,

由作圖可知 OA=OB=OC )(填推理的依據(jù))

∴⊙O為△ABC的外接圓;

∵點(diǎn)C,P在⊙O上,

∴∠APB=ACB.( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,菱形ABCD的頂點(diǎn)A,D在直線上,∠BAD60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)αα30°),得到菱形ABCD,BC交對(duì)角線AC于點(diǎn)M,CD交直線l于點(diǎn)N,連接MN

1)當(dāng)MNBD時(shí),求α的大小.

2)如圖2,對(duì)角線BDAC于點(diǎn)H,交直線l與點(diǎn)G,延長CBAB于點(diǎn)E,連接EH.當(dāng)HEB的周長為2時(shí),求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,∠BAC120°、OABC、若AB4.

(1)求證:四邊形OACD為菱形.

(2)AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案