【題目】已知,如圖,∠BAG=45°,∠AGD=135°,∠E=∠F.求證:∠BAE=∠CGF.
【答案】證明:∵∠BAG=45°,∠AGD=135°, ∴∠BAG+∠AGD=180°,
∴AB∥CD,
∴∠BAG=∠AGC,
∵∠E=∠F,
∴AE∥FG,
∴∠EAG=∠FGA,
∴∠BAG﹣∠EAG=∠CGA﹣∠FGA,
∴∠BAE=∠CGF
【解析】求出∠BAG+∠AGD=180°,根據(jù)平行線的判定得出AB∥CD,根據(jù)平行線的性質(zhì)得出∠BAG=∠AGC,根據(jù)平行線的判定得出AE∥FG,根據(jù)平行線的性質(zhì)得出∠EAG=∠FGA,即可得出答案.
【考點精析】關(guān)于本題考查的平行線的判定與性質(zhì),需要了解由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,李明同學(xué)在東西方向的濱海路A處,測得海中燈塔P在北偏東60°方向上,他向東走400米至B處,測得燈塔P在北偏東30°方向上,求燈塔P到濱海路的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共180件,其進(jìn)價和售價如表:(注:獲利=售價﹣進(jìn)價)
甲 | 乙 | |
進(jìn)價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x≠0時,下列運算不正確的是( )
A.a2a=a3
B.(﹣a3)2=a6
C.(3a2)2=9a4
D.a3÷a3=a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班的學(xué)生有_____人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com