【題目】閱讀下列材料:
已知:如圖1,等邊△A1A2A3內(nèi)接于⊙O,點P是上的任意一點,連接PA1,PA2,PA3,可證:PA1+PA2=PA3,從而得到:是定值.
(1)以下是小紅的一種證明方法,請在方框內(nèi)將證明過程補充完整;
證明:如圖1,作∠PA1M=60°,A1M交A2P的延長線于點M.
∵△A1A2A3是等邊三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2=PA2+PM=PA2+PA1.
∴,是定值.
(2)延伸:如圖2,把(1)中條件“等邊△A1A2A3”改為“正方形A1A2A3A4”,其余條件不變,請問:還是定值嗎?為什么?
(3)拓展:如圖3,把(1)中條件“等邊△A1A2A3”改為“正五邊形A1A2A3A4A5”,其余條件不變,則= (只寫出結(jié)果).
【答案】(1)證明見解析;(2)是定值,理由見解析;(3)
【解析】(2)結(jié)論:是定值.在A4P上截取AH=A2P,連接HA1.證明PA4=A4+PH=PA2+PA1,同法可證:PA3=PA1+PA2,推出(+1)(PA1+PA2)=PA3+PA4,可得PA1+PA2=(-1)(PA3+PA4),即可解決問題;
(3)結(jié)論:則.如圖3-1中,延長PA1到H,使得A1H=PA2,連接A4H,A4A2,A4A1.由△HA4A1≌△PA4A2,可得△A4HP是頂角為36°的等腰三角形,推出PH=PA4,即PA1+PA2=PA4,如圖3-2中,延長PA5到H,使得A5H=PA3.同法可證:△A4HP是頂角為108°的等腰三角形,推出PH=PA4,即PA5+PA3=PA4,即可解決問題;
(1)如圖1,作∠PA1M=60°,A1M交A2P的延長線于點M.
∵△A1A2A3是等邊三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2,
∵PM=PA1,
∴PA3=MA2=PA2+PM=PA2+PA1.
∴,是定值.
(2)結(jié)論:是定值.
理由:在A4P上截取AH=A2P,連接HA1.
∵四邊形A1A2A3A4是正方形,
∴A4A1=A2A1,
∵∠A1A4H=∠A1A2P,A4H=A2P,
∴△A1A4H=△A1A2P,
∴A1H=PA1,∠A4A1H=∠A2A1P,
∴∠HA1P=∠A4A1A2=90°
∴△HA1P的等腰直角三角形,
∴PA4=HA4+PH=PA2+PA1,
同法可證:PA3=PA1+PA2,
∴(+1)(PA1+PA2)=PA3+PA4,
∴PA1+PA2=(-1)(PA3+PA4),
∴.
(3)結(jié)論:則.
理由:如圖3-1中,延長PA1到H,使得A1H=PA2,連接A4H,A4A2,A4A1.
由△HA4A1≌△PA4A2,可得△A4HP是頂角為36°的等腰三角形,
∴PH=PA4,即PA1+PA2=PA4,
如圖3-2中,延長PA5到H,使得A5H=PA3.
同法可證:△A4HP是頂角為108°的等腰三角形,
∴PH=PA4,即PA5+PA3=PA4,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②;③.
(1)上述三個條件中,由哪兩個條件可以判定是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某購物網(wǎng)店在雙十一期間實行打折促銷活動,規(guī)定如下表:
次性購物不大于100元不打折,不大于300元但大于100元打九折,超過300元的部分打八折.
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該網(wǎng)店一次性購物元,當低于300元但大于100元時,他實際付款多少元?當大于300元時,他實際付款多少元?(用含的式子表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為元,用含的式子表示兩次購物王老師實際付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有 人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= ,n= ;C等級對應(yīng)扇形有圓心角為 度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小傅某天下午營運全是在東西走向的大道上行駛的.若如果規(guī)定向東為正,則行車里程(單位:km)如下:
+11,-2,+3,+10,-11,+5,-15,-8
(1)當把最后一名乘客送到目的地時,小傅距離出車地點的距離為多少?
(2)若每千米的營運額為7元,成本為1.5元/km,則這天下午他盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥DE,AB=DE,請你添加一個條件_______ 可以根據(jù)“ASA”使得△ABC≌△DEF;或者添加條件BE=CF,可以根據(jù)_______得到△ABC≌△DEF。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上一點,OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD與∠BOE的補角;
(2)試判斷∠COD與∠COE具有怎樣的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級開展了為期一周的“敬老愛親”社會活動,并根據(jù)學生做家務(wù)的時間來評價他們在活動中的表現(xiàn),學校隨機抽查了部分學生在這次活動中做家務(wù)的時間,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中提供的信息,解答下列問題:
等級 | 做家務(wù)時間(小時) | 頻數(shù) | 百分比 |
A | 0.5≤x<1 | 3 | 6% |
B | 1<x<1.5 | a | 30% |
C | 1.5≤x<2 | 20 | 40% |
D | 2≤x<2.5 | b | m |
E | 2.5≤x<3 | 2 | 4% |
(1)這次活動中抽查的學生有______人,表中a=______,b=______,m=______,并補全頻數(shù)分布直方圖;
(2)若該校七年級有700名學生,請估計這所學校七年級學生一周做家務(wù)時間不足2小時而又不低于1小時的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉(zhuǎn)90°后,I的對應(yīng)點I'的坐標為( 。
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com