【題目】如圖,在正方形ABCD的外側(cè),作等邊△ADEAC、BE相交于點(diǎn)F,則∠EFC為(  )

A.135°B.145°C.120°D.165°

【答案】C

【解析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE150°,ABAE,由等腰三角形的性質(zhì)和內(nèi)角和得出∠ABE=∠AEB15°,再運(yùn)用三角形的外角性質(zhì)即可得出∠BFC,即可求出∠EFC

解:∵四邊形ABCD是正方形,

∴∠BAD90°ABAD,∠BAF45°

∵△ADE是等邊三角形,

∴∠DAE60°,ADAE,

∴∠BAE90°+60°150°,ABAE,

∴∠ABE=∠AEB180°150°)=15°,

∴∠BFC=∠BAF+ABE45°+15°60°,

∴∠EFC180°﹣∠BFC120°;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)的運(yùn)動(dòng)服裝專柜,對(duì)兩種品牌的遠(yuǎn)動(dòng)服分兩次采購試銷后,效益可觀,計(jì)劃繼續(xù)采購進(jìn)行銷售.已知這兩種服裝過去兩次的進(jìn)貨情況如下表.

第一次

第二次

品牌運(yùn)動(dòng)服裝數(shù)/件

20

30

品牌運(yùn)動(dòng)服裝數(shù)/件

30

40

累計(jì)采購款/元

10200

14400

1)問兩種品牌運(yùn)動(dòng)服的進(jìn)貨單價(jià)各是多少元?

2)由于品牌運(yùn)動(dòng)服的銷量明顯好于品牌,商家決定采購品牌的件數(shù)比品牌件數(shù)的倍多5件,在采購總價(jià)不超過21300元的情況下,最多能購進(jìn)多少件品牌運(yùn)動(dòng)服?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,如圖,點(diǎn)C、D在⊙O上,直徑AB=6 ,弦ACBD相交于點(diǎn)E . 若CE=BC , 則陰影部分面積為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,,在同一條直線上,連接.

(1)請(qǐng)找出圖②中與全等的三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ADBC,AC,BD相交于O,則圖中能夠全等的三角形共有(  )對(duì).

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=20°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在△ABC的其他邊上,則可以畫出的等腰三角形的個(gè)數(shù)最多為(  )

A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α角到△A1B1C的位置,A1B1恰好經(jīng)過點(diǎn)B,則旋轉(zhuǎn)角α的度數(shù)等( )
A.35°
B.55°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b與y=kbx,它們?cè)谕蛔鴺?biāo)系內(nèi)的圖象可能為

查看答案和解析>>

同步練習(xí)冊(cè)答案