【題目】如圖,在ABCD中,E、F分別是AB、CD的中點.
(1)求證:四邊形EBFD為平行四邊形;
(2)對角線AC分別與DE、BF交于點M、N,求證:△ABN≌△CDM.
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
∵E、F分別是AB、CD的中點,
∴BE=DF,
∵BE∥DF,
∴四邊形EBFD為平行四邊形;
(2)
證明:∵四邊形EBFD為平行四邊形,
∴DE∥BF,
∴∠CDM=∠CFN.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
∴∠BAC=∠DCA,∠ABN=∠CFN,
∴∠ABN=∠CDM,
在△ABN與△CDM中,
,
∴△ABN≌△CDM (ASA).
【解析】(1)根據(jù)平行四邊形的性質(zhì):平行四邊的對邊相等,可得AB∥CD,AB=CD;根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可得答案;
(2)根據(jù)平行四邊的性質(zhì):平行四邊形的對邊相等,可得AB∥CD,AB=CD,∠CDM=∠CFN;根據(jù)全等三角形的判定,可得答案.
【考點精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì),需要了解若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′,B′,A′,B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標(biāo)為( )
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AD與△ABC的外接圓⊙O恰好相切于點A,邊CD與⊙O相交于點E,連接AE,BE.
(1)求證:AB=AC;
(2)若過點A作AH⊥BE于H,求證:BH=CE+EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問題:2+22+23+24+…+22015﹣1的末位數(shù)字是( 。
A.0
B.3
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為( )
A.-1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點A和點B(﹣2,n),與x軸交于點C(﹣1,0),連接OA.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點P在坐標(biāo)軸上,且滿足PA=OA,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+2與兩坐標(biāo)軸分別交于A、B兩點,將線段OA分成n等份,分點分別為P1 , P2 , P3 , …,Pn﹣1 , 過每個分點作x軸的垂線分別交直線AB于點T1 , T2 , T3 , …,Tn﹣1 , 用S1 , S2 , S3 , …,Sn﹣1分別表示Rt△T1OP1 , Rt△T2P1P2 , …,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則當(dāng)n=2015時,S1+S2+S3+…+Sn﹣1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,點P在四邊形ABCD的邊上.若點P到BD的距離為,則點P的個數(shù)為( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com