【題目】如圖,在△ABC中,∠ACB=90°,BC=AC=4,M為AB中點,D是射線BC上的一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,連接ED、ME,點D在運動過程中ME的最小值為 .
【答案】2
【解析】解:連接EB,過點M作MG⊥EB于點G,過點A作AK⊥AB交BD的延長線于點K,則△AKB是等腰直角三角形.
在△ADK與△ABE中,
,
∴△ADK≌△ABE,
∴∠ABE=∠K=45°,
∴△BMG是等腰直角三角形,
∵BC=4,
∴AB=4 ,
∵M(jìn)為AB中點,
∴BM=2 ,
∴MG=2,
∵∠G=90°
∴BM≥MG,
∴當(dāng)ME=MG時,ME的值最小,
∴ME=BE=2
所以答案是:2.
【考點精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°,以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨若移動終端設(shè)備的升級換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項:A .和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)査,得到如下圖表(部分信息未給出):
根據(jù)以上信息解答下列問題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中 的值,并補(bǔ)全條形統(tǒng)計圖;
(3)若該中學(xué)約有名學(xué)生,估計全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?
并根據(jù)以上調(diào)査結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合:
(1)如圖1,紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,則四邊形AEE'D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.
①求證:四邊形AFF'D是菱形;
②求四邊形AFF'D的兩條對角線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:
①拋物線過原點;
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點坐標(biāo)為(2,b);
⑤當(dāng)x<2時,y隨x增大而增大.
其中結(jié)論正確的是( )
A.①②③ B.③④⑤ C.①②④ D.①④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com