【題目】如圖1,一次函數(shù)y=kx﹣6(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(4,b).

(1)b=   ;k=   ;

(2)點(diǎn)C是線段AB上一點(diǎn),過(guò)點(diǎn)C且平行于y軸的直線l交該反比例函數(shù)的圖象于點(diǎn)D,連接OC,OD,BD,若四邊形OCBD的面積S四邊形OCBD=,求點(diǎn)C的坐標(biāo);

(3)將第(2)小題中的OCD沿射線AB方向平移一定的距離后,得到O'C'D',若點(diǎn)O的對(duì)應(yīng)點(diǎn)O'恰好落在該反比例函數(shù)圖象上(如圖2),求此時(shí)點(diǎn)D的對(duì)應(yīng)點(diǎn)D'的坐標(biāo).

【答案】(1)2;2;(2)C(,﹣1);(3)D′(,).

【解析】分析:(1)利用待定系數(shù)法把點(diǎn)B(4,b)代入y=即可求解;(2)設(shè)C(m,2m-6)(0<m<4),D(m,),根據(jù)四邊形的面積構(gòu)建方程即可解決問(wèn)題;(3)根據(jù)一次函數(shù),利用方程組求出點(diǎn)O的坐標(biāo),即可解決問(wèn)題.

詳解:(1)把點(diǎn)B(4,b)代入y=中,得到b=2,

B(4,2)代入y=kx﹣6中,得到k=2,

故答案為2,2;

(2)設(shè)C(m,2m﹣6)(0<m<4),則D(m,),

CD=﹣2m+6,

S四邊形OCBD=,

CDxB=,

﹣2m+6)×4=

10m2﹣9m﹣40=0,

m1=,m2=﹣,

經(jīng)檢驗(yàn):m1=,m2=﹣是原方程的解,

0<m<4,

m=

C(,﹣1).

(3)由平移可知:OO′AB,

∴直線OO′的解析式為y=2x,

,解得(舍棄),

O′(2,4),

D′(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)M,ON對(duì)應(yīng)的數(shù)分別為-3,01,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x

(1)如果點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等,那么x的值是______;

(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M,點(diǎn)N的距離之和是5?若存在,請(qǐng)直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.

(3)如果點(diǎn)P以每分鐘3個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)M和點(diǎn)N分別以每分鐘1個(gè)單位長(zhǎng)度和每分鐘4個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么幾分鐘時(shí)點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB=90°AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:已知RtABC的周長(zhǎng)為30,斜邊長(zhǎng)c=13,求ABC的面積.、

解法展示:設(shè)RtABC的兩直角邊長(zhǎng)分別為a,b,則a+b+c=______

因?yàn)?/span>c=13,所以a+b=______

所以(a+b2=______,所以a2+ b2+_____=289

因?yàn)?/span>a2+b2=c2,所以c2+2ab=289,

所以⑤______+2ab=289,所以ab=______(第1步),

所以ABC的面積=ab=×______=______(第2步).

合作探究:(1)對(duì)解法展示進(jìn)行填空.

(2)上述解題過(guò)程中,由第1步到第2步體現(xiàn)出來(lái)的數(shù)學(xué)思想是______(填序號(hào)).

①整體思想;②數(shù)形結(jié)合思想;③分類(lèi)討論思想.

方法遷移:

(3)已知一直角三角形的面積為24,斜邊長(zhǎng)為10,求這個(gè)直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)快、慢兩車(chē)分別從相距360千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,快車(chē)到達(dá)乙地后,停留1小時(shí),然后按原路原速返回,快車(chē)比慢車(chē)晚1小時(shí)到達(dá)甲地,快、慢兩車(chē)距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時(shí)間x(小時(shí))的關(guān)系如圖.

請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:

1)慢車(chē)的速度是   千米/小時(shí),快車(chē)的速度是   千米/小時(shí);

2)求m的值,并指出點(diǎn)C的實(shí)際意義是什么?

3)在快車(chē)按原路原速返回的過(guò)程中,快、慢兩車(chē)相距的路程為150千米時(shí),慢車(chē)行駛了多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

1)這次統(tǒng)計(jì)共抽查了  名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為   

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信、“QQ”、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,于點(diǎn),于點(diǎn)平分于點(diǎn),點(diǎn)為線段延長(zhǎng)線上一點(diǎn),.則下列結(jié)論:①;②;③;④若,則,正確的有:________.(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),OBD的中點(diǎn),PO的延長(zhǎng)線交BC于點(diǎn)Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)圖形中,能用、、三種方法表示同一個(gè)角的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案