【題目】如圖所示,在中, ,,于點,于點,則下列三個結(jié)論:;②;③中(

A.全部正確B.僅①和②正確C.僅①和正確D.僅①和③正確

【答案】B

【解析】

只要證明RtAPRRtAPSHL),推出ARAS,即可判斷①;由∠PAQ=∠APQ,推出∠BAP=∠APQ,以及,可得QPAB,即可判斷②.根據(jù)在中,只有∠BRP=∠QSP,以及,即可判斷③.

解:∵于點,于點

∴在RtAPRRtAPS中,

PSPRAPAP

RtAPRRtAPSHL),

ARAS,①正確;

AQPQ,
∴∠PAQ=∠APQ


∴∠RAP=∠APQ,
QPAB,②正確,

中,只有∠BRP=∠QSP,以及,

∴不能判斷,故③錯誤;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,A,E,F,C在一條直線上,AE=CF,過EF分別作DE⊥ACBF⊥AC,若AB=CD

1)求證:EG=FG

2)若將△DEC的邊EC沿AC方向移動,變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一.為了倡導(dǎo)節(jié)約用水從我們做起,小剛在他所在班的50名同學(xué)中,隨機調(diào)查了10名同學(xué)家庭中的一年的月均用水量(單位:t),其用水量分別為6、76.5、6.5、7.5、7.5、6.5、68、6.5.求這10個數(shù)據(jù)的平均數(shù).眾數(shù).中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖 1,六邊形 ABCDEF 的每一個內(nèi)角都相等.

(1)六邊形 ABCDEF 每一個內(nèi)角的度數(shù)是 ;

(2)在圖 1 , AF 2 ,AB 4 ,BC 3 ,CD 1 , DE ,EF

(3)如圖 2,(2)的條件下, M N 分別為邊 AF 、 AB 的中點,連接 CM 、DN交于點 G ,求的值

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B是切點,點C是劣弧AB上的一點,若∠P=40°,則∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D 的中點.

(1)求證:AB=BC;

(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點Ay軸負半軸上的一個動點,點Bx軸負半軸上的一個動點,連接AB,過點BAB的垂線,使得BCAB,且點Cx軸的上方.

1)求證:∠CBD=∠BAO;

2)如圖2,點A、點B在滑動過程中,把AB沿y軸翻折使得AB'剛好落在AC的邊上,此時BCy軸于點H,過點CCN垂直y軸于點N,求證AH2CN;

3)如圖3,點A、點B在滑動過程中,使得點C在第二象限內(nèi),過點CCF垂直y軸于點F,求證:OBAO+CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

同步練習(xí)冊答案