【題目】丫頭和爸爸從家出發(fā)到大劇院觀看巴交有聲巴蜀中學新年演奏會,爸爸先出發(fā),2分鐘后丫頭沿同一路線出發(fā)去追爸爸,當丫頭追上爸爸時發(fā)現(xiàn)背包落在途中了,爸爸立即返回找背包,丫頭繼續(xù)前往大劇院,當丫頭到達大劇院時,爸爸剛好找到背包并立即前往大劇院爸爸找背包的時間不計,丫頭在大劇院等了一會,沒有等到爸爸,就沿同一路線返回接爸爸,最終與爸爸會合,丫頭和爸爸的速度始終不變,如圖是丫頭和爸爸兩人之間的距離與丫頭出發(fā)的時間分鐘的函數(shù)圖象,則丫頭在大劇院等了爸爸______分鐘.

【答案】5.5

【解析】

本題從函數(shù)圖象著手,根據(jù)題意,可計算出丫頭和爸爸行走的速度,然后圖示一下丫頭與爸爸第二次會合的情況,設(shè)未知數(shù)建立方程求解可得.

設(shè)丫頭和爸爸的行走速度分別為:,

根據(jù)函數(shù)圖象在時,由題意,爸爸的行走速度分鐘

根據(jù)時,丫頭追上爸爸可得:,

丫頭行走的速度分鐘,相遇時行走的路程

觀察圖象在時,丫頭和爸爸相距最大,可知是丫頭到大劇院所經(jīng)歷的時間,

所以家到大劇院的總路程,由分鐘可知爸爸返回找到背包行走路程,

,

此時設(shè)丫頭在大劇院等爸爸的時間為t分鐘,由圖象知丫頭與爸爸會合所用時間為分鐘可建立方程如下:

,

解得分鐘,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)已知:如圖,ABC中,DAB的中點,EAC上一點,EFAB,DFBE

(1)猜想:DFAE的關(guān)系是______.

(2)試說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,∠PAB=135°,∠PCD=125°.求∠APC度數(shù).小明的思路是:如圖2,過PPEAB,通過平行線性質(zhì),可求得∠APC的度數(shù).請寫出具體求解過程.

問題遷移:

(1)如圖3,ADBC,點P在射線OM上運動,當點PA、B兩點之間運動時,∠ADP=α,∠BCP=β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;

(2)(1)的條件下,如果點PA、B兩點外側(cè)運動時(P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用長為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計).

(Ⅰ)求出 的函數(shù)關(guān)系式;
(Ⅱ)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過對某校七年級學生體育選修課程的統(tǒng)計,得到以下信息:

①參加選課的總?cè)藬?shù)為300;

②參加選課的學生在“足球、籃球、排球、乒乓球”中都選擇了一門;

③選足球和選排球的人數(shù)共占總?cè)藬?shù)的50%;選乒乓球的人數(shù)是選排球人數(shù)的2倍;

選足球和選籃球的人數(shù)共占總?cè)藬?shù)的85%.

設(shè)選足球的人數(shù)為x,選排球的人數(shù)為y,試列出二元一次方程組,分別求出選擇足球、籃球、排球、乒乓球各門課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=12cm,∠B=90°.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,如果P,Q分別從A,B同時出發(fā),設(shè)移動時間為t(s).

(1)當t=2時,求△PBQ的面積;
(2)當 為多少時,四邊形APQC的面積最小?最小面積是多少?
(3)當 為多少時,△PQB與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=﹣x+8x軸、y軸分別交于點A和點B,MOB上的一點,若將ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的函數(shù)解析式是( 。

A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),點B、C、E在同一直線上

1)求證:;

2)若,于點,于點,請直接寫出圖(2)中所有與互余的角.

查看答案和解析>>

同步練習冊答案