【題目】某公司購買了一批A、B型芯片,其中A型芯片的單價(jià)比B型芯片的單價(jià)少9元,已知該公司用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等.
(1)求該公司購買的A、B型花片的單價(jià)各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費(fèi)用不超過6300元,求A型芯片至少購買多少條?
【答案】(1)A型芯片的單價(jià)為26元/條,B型芯片的單價(jià)為35元/條;(2)A型芯片至少購買78條
【解析】
(1)設(shè)B型芯片的單價(jià)為x元/條,則A型芯片的單價(jià)為(x﹣9)元/條,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;
(2)設(shè)購買a條A型芯片,則購買(200﹣a)條B型芯片,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.
(1)設(shè)B型芯片的單價(jià)為x元/條,則A型芯片的單價(jià)為(x﹣9)元/條,
根據(jù)題意得:,
解得:x=35,
經(jīng)檢驗(yàn),x=35是原方程的解,且符合題意,
∴x﹣9=26.
答:A型芯片的單價(jià)為26元/條,B型芯片的單價(jià)為35元/條.
(2)設(shè)購買a條A型芯片,則購買(200﹣a)條B型芯片,
根據(jù)題意得:26a+35(200﹣a)≤6300,
解得:a≥.
答:A型芯片至少購買78條.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與y=nx+4n(n≠0)的交點(diǎn)的橫坐標(biāo)為2,則關(guān)于x的不等式x+m>nx+4n>0的整數(shù)解為 ( )
A. 1B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.
根據(jù)以上情況,請你回答下列問題:
(1)假設(shè)小邱從白盤中隨機(jī)取一個粽子,恰好取到紅棗粽子的概率是多少?
(2)若小邱先從白盤里的四個粽子中隨機(jī)取一個粽子,再從花盤里的四個粽子中隨機(jī)取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點(diǎn)O的線段EF,分別交AD,BC于點(diǎn)E,F,當(dāng)AE=ED時,△AOE的面積為4,則四邊形EFCD的面積是( 。
A.8B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)H是BC的中點(diǎn),作射線AH,在線段AH及其延長線上分別取點(diǎn)E,F,連接BE,CF.
(1)如圖1,請你添加一個條件_____________,使得△BEH≌△CFH:
(2)如圖2,在(1)的條件下,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,并給出證明.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OBCD中,OB=5,OD=3,以O為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)B,點(diǎn)D分別在x軸,y軸上,點(diǎn)C在第一象限內(nèi),若平面內(nèi)有一動點(diǎn)P,且滿足S△POB=S矩形OBCD,問:
(1)當(dāng)點(diǎn)P在矩形的對角線OC上,求點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P到O,B兩點(diǎn)的距離之和PO+PB取最小值時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,是直線上的一點(diǎn),是直角, 平分.
(1)若,則的度數(shù)為 °;
(2)將圖 1 中的繞頂點(diǎn) 順時針旋轉(zhuǎn)至圖 2 的位置,其他條件不變, 探究和的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
(3)將圖 1 中的繞頂點(diǎn) 順時針旋轉(zhuǎn)至圖 3 的位置,其他條件不變,直接寫出 和的度數(shù)之間的關(guān)系: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com