【題目】某公司購買了一批A、B型芯片,其中A型芯片的單價(jià)比B型芯片的單價(jià)少9元,已知該公司用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等.

1)求該公司購買的AB型花片的單價(jià)各是多少元?

2)若兩種芯片共購買了200條,且購買的總費(fèi)用不超過6300元,求A型芯片至少購買多少條?

【答案】1A型芯片的單價(jià)為26/條,B型芯片的單價(jià)為35/條;(2A型芯片至少購買78

【解析】

1)設(shè)B型芯片的單價(jià)為x/條,則A型芯片的單價(jià)為(x9)元/條,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

2)設(shè)購買aA型芯片,則購買(200a)條B型芯片,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.

1)設(shè)B型芯片的單價(jià)為x/條,則A型芯片的單價(jià)為(x9)元/條,

根據(jù)題意得:

解得:x35

經(jīng)檢驗(yàn),x35是原方程的解,且符合題意,

x926

答:A型芯片的單價(jià)為26/條,B型芯片的單價(jià)為35/條.

2)設(shè)購買aA型芯片,則購買(200a)條B型芯片,

根據(jù)題意得:26a+35200a≤6300,

解得:a

答:A型芯片至少購買78條.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+my=nx+4n(n≠0)的交點(diǎn)的橫坐標(biāo)為2,則關(guān)于x的不等式x+m>nx+4n>0的整數(shù)解為 ( )

A. 1B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.

根據(jù)以上情況,請你回答下列問題:

(1)假設(shè)小邱從白盤中隨機(jī)取一個粽子,恰好取到紅棗粽子的概率是多少?

(2)若小邱先從白盤里的四個粽子中隨機(jī)取一個粽子,再從花盤里的四個粽子中隨機(jī)取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過平行四邊形ABCD對角線交點(diǎn)O的線段EF,分別交ADBC于點(diǎn)E,F,當(dāng)AEED時,AOE的面積為4,則四邊形EFCD的面積是( 。

A.8B.12C.16D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點(diǎn)HBC的中點(diǎn),作射線AH,在線段AH及其延長線上分別取點(diǎn)E,F,連接BE,CF.

(1)如圖1,請你添加一個條件_____________,使得BEH≌△CFH:

(2)如圖2,在(1)的條件下,當(dāng)BHEH滿足什么關(guān)系時,四邊形BFCE是矩形,并給出證明.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBCEFAD,AG平分∠BAD,∠AGB=90°.請問BG平分∠ABC嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OBCD中,OB5,OD3,以O為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)B,點(diǎn)D分別在x軸,y軸上,點(diǎn)C在第一象限內(nèi),若平面內(nèi)有一動點(diǎn)P,且滿足SPOBS矩形OBCD,問:

1)當(dāng)點(diǎn)P在矩形的對角線OC上,求點(diǎn)P的坐標(biāo);

2)當(dāng)點(diǎn)POB兩點(diǎn)的距離之和PO+PB取最小值時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,是直線上的一點(diǎn),是直角, 平分.

1)若,則的度數(shù)為 °;

2)將圖 1 中的繞頂點(diǎn) 順時針旋轉(zhuǎn)至圖 2 的位置,其他條件不變, 探究的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

3)將圖 1 中的繞頂點(diǎn) 順時針旋轉(zhuǎn)至圖 3 的位置,其他條件不變,直接寫出 的度數(shù)之間的關(guān)系: .

查看答案和解析>>

同步練習(xí)冊答案