【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.
(1)求拋物線的表達(dá)式;
(2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)P ( ,);(3)當(dāng)Q的坐標(biāo)為(0,0)或(9,0)時(shí),以A、C、Q為頂點(diǎn)的三角形與△BCD相似.
【解析】
(1)先求得點(diǎn)B和點(diǎn)C的坐標(biāo),然后將點(diǎn)B和點(diǎn)C的坐標(biāo)代入拋物線的解析式得到關(guān)于b、c的方程,從而可求得b、c的值;(2)作點(diǎn)O關(guān)于BC的對稱點(diǎn)O′,則O′(3,3),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點(diǎn)P的坐標(biāo);(3)先求得點(diǎn)D的坐標(biāo),然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.
(1)把x=0代入y=﹣x+3,得:y=3,
∴C(0,3).
把y=0代入y=﹣x+3得:x=3,
∴B(3,0),A(﹣1,0).
將C(0,3)、B(3,0)代入y=﹣x2+bx+c得: ,解得b=2,c=3.
∴拋物線的解析式為y=﹣x2+2x+3.
(2)如圖所示:作點(diǎn)O關(guān)于BC的對稱點(diǎn)O′,則O′(3,3).
∵O′與O關(guān)于BC對稱,
∴PO=PO′.
∴OP+AP=O′P+AP≤AO′.
∴OP+AP的最小值=O′A==5.
O′A的方程為y=
P點(diǎn)滿足解得:
所以P ( ,)
(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4).
又∵C(0,3,B(3,0),
∴CD=,BC=3,DB=2.
∴CD2+CB2=BD2,
∴∠DCB=90°.
∵A(﹣1,0),C(0,3),
∴OA=1,CO=3.
∴.
又∵∠AOC=DCB=90°,
∴△AOC∽△DCB.
∴當(dāng)Q的坐標(biāo)為(0,0)時(shí),△AQC∽△DCB.
如圖所示:連接AC,過點(diǎn)C作CQ⊥AC,交x軸與點(diǎn)Q.
∵△ACQ為直角三角形,CO⊥AQ,
∴△ACQ∽△AOC.
又∵△AOC∽△DCB,
∴△ACQ∽△DCB.
∴,即,解得:AQ=10.
∴Q(9,0).
綜上所述,當(dāng)Q的坐標(biāo)為(0,0)或(9,0)時(shí),以A、C、Q為頂點(diǎn)的三角形與△BCD相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,M是OA上一點(diǎn),過M作AB的垂線交AC于點(diǎn)N,交BC的延長線于點(diǎn)E,直線CF交EN于點(diǎn)F,若∠BAC=30°,且∠ECF=∠E.
(1)試判斷CF與⊙O的位置關(guān)系,并說明理由;
(2)設(shè)⊙O的半徑為2,且AC=CE,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一款進(jìn)價(jià)為每件40元的護(hù)膚品,調(diào)查發(fā)現(xiàn),銷售單價(jià)不低于40元且不高于80元時(shí),該商品的日銷售量y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)銷售單價(jià)為44元時(shí),日銷售量為72件;當(dāng)銷售單價(jià)為48元時(shí),日銷售量為64件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該護(hù)膚品的日銷售利潤為w(元),當(dāng)銷售單價(jià)x為多少時(shí),日銷售利潤w最大,最大日銷售利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點(diǎn),且S△ABC=4 cm2,則△BEC的面積為( )
A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雪楓中學(xué)食堂一工人在每天擺碗的過程中總結(jié)出,如果你給他報(bào)出桌面上碗的高度,他能說出碗的個(gè)數(shù),你給他報(bào)出碗的個(gè)數(shù)他能說出確的高度,真可謂數(shù)學(xué)就在身邊,缺乏慧眼發(fā)現(xiàn):
(1)求整齊疊放在桌面上碗的高度y(cm)與碗數(shù)x(個(gè))之間的一次函數(shù)解析式(不要求寫出自變量 x的取值范圍):
(2)若桌面上有12個(gè)碗,整齊疊放成一摞,求出它的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個(gè)紅球1個(gè)白球和1個(gè)籃球,小剛和小明想通過摸球來決定誰去看電影,同學(xué)甲設(shè)計(jì)了如下的方案:第一次隨機(jī)從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負(fù)規(guī)則如下:摸到“一紅一白”,則小剛看電影;摸到“一白一藍(lán)”,則小明看電影.
(1)同學(xué)甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)你若認(rèn)為這個(gè)方案不公平,那么請你改變一下規(guī)則,設(shè)計(jì)一個(gè)公平的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com