【題目】有這樣一個問題,探究函數(shù)yx22的圖象與性質(zhì),小張根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)yx22的圖象與性質(zhì)進(jìn)行了研究,下面是小張的探究過程,請補充完整:

1)函數(shù)yx22的自變量取值范圍是 

2)下表是yx的幾組對應(yīng)值:

x

4

3

2

1

0

1

2

3

4

y

n

3

0

1

0

1

0

3

m

m的值;

3)如圖,在平面直角坐標(biāo)系xOy中,算出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)算出的點,畫出該函數(shù)的圖象;

4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第四象限內(nèi)的最低點是1,﹣1),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其他性質(zhì)(一條即可);

5)根據(jù)圖象回答:方程x22=﹣  個實數(shù)解.

【答案】1)自變量取值范圍是任意實數(shù);(2m的值為8;(3)如圖見解析;(4)當(dāng)x<﹣1時,yx的增大而減。5)方程x22=﹣3個實數(shù)解.

【解析】

1)根據(jù)二次根式的意義和函數(shù)關(guān)系式即可求解;

2)根據(jù)函數(shù)關(guān)系式將x的值代入即可求解;

3)根據(jù)表格數(shù)據(jù),描點,連線,即可畫出圖象;

4)觀察函數(shù)圖像,利用增減性寫出一條性質(zhì);

5)根據(jù)圖象將y=x2-2的圖象向下平移0.5個單位長度與原函數(shù)圖象有三個交點即可求解.

1)根據(jù)函數(shù)解析式可知:無論x為何值,均有意義,

∴自變量取值范圍是任意實數(shù).

故答案為任意實數(shù).

2)當(dāng)x4時,y

答:m的值為8

3)如圖:

4)根據(jù)函數(shù)圖象可知:

當(dāng)x<﹣1時,yx的增大而減小.

5)根據(jù)圖象可知:

直線y=﹣,與函數(shù)圖象有三個交點,即可得:

方程x22=﹣3個實數(shù)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:①;②;③;④;⑤.其中,正確結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC,BAC=120°,AB=AC=2DBC邊上的一個動點(不與B、C重合),AC上取一點E使∠ADE=30°

1)求證ABD∽△DCE;

2)設(shè)BD=x,AE=y,y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2016年投資11萬元新增一批電腦,計劃以后每年以相同的增長率進(jìn)行投資,2018年投資18.59萬元.

1)求該學(xué)校為新增電腦投資的年平均增長率;

2)從2016年到2018年,該中學(xué)三年為新增電腦共投資多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產(chǎn)品,隨機調(diào)查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.

2018年參觀故宮觀眾年齡頻數(shù)分布表

年齡x/

頻數(shù)/人數(shù)

頻率

20≤x30

80

b

30≤x40

a

0.240

40≤x50

35

0.175

50≤x60

37

c

合計

200

1.000

1)求表中a,b,c的值;

2)補全頻數(shù)分布直方圖;

3)從數(shù)據(jù)上看,年輕觀眾(20≤x40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達(dá)到2000萬人次,那么其中年輕觀眾預(yù)計約有 萬人次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,以點A為圓心,2為半徑作圓,點E是⊙A上的任意一點,將點E繞點D按逆時針方向轉(zhuǎn)轉(zhuǎn)90°得到點F,連接AFDF,則的最小值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊ABCAB上的一點,且ADDB12,現(xiàn)將ABC折疊,使點CD重合,折痕為EF,點E、F分別在ACBC上,則CECF的值為(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,二次函數(shù)的圖象經(jīng)過A3,3),與x軸正半軸交于B點,與y軸交于C點,ABC的外接圓恰好經(jīng)過原點O.

1)求B點的坐標(biāo)及二次函數(shù)的解析式;

2)拋物線上一點Qmm+3),(m為整數(shù)),點M為△ABC的外接圓上一動點,求線段QM長度的范圍;

3)將△AOC繞平面內(nèi)一點P旋轉(zhuǎn)180°至△A'O'C'(點O'O為對應(yīng)點),使得該三角形的對應(yīng)點中的兩個點落在的圖象上,求出旋轉(zhuǎn)中心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)yx24x+3和一次函數(shù)y=﹣x+1,我們把ytx24x+3+1t)(﹣x+1)稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線E.現(xiàn)有點A10)和拋物線E上的點B2,n),請完成下列任務(wù):

(嘗試)

⑴判斷點A是否在拋物線E上;

⑵求n的值.

(發(fā)現(xiàn))通過(1)和(2)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,請你求出定點的坐標(biāo).

(應(yīng)用)二次函數(shù)y=﹣3x2+8x5是二次函數(shù)yx24x+3和一次函數(shù)y=﹣x+1的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案