【題目】小明早上7點(diǎn)騎自行車(chē)從家出發(fā),以每小時(shí)12千米的速度到距家4千米的學(xué)校上課,行至距學(xué)校1千米的地方時(shí),自行車(chē)突然發(fā)生故障,小明只得改為步行前往學(xué)校,如果他想在7點(diǎn)30分之前趕到學(xué)校,那么他步行的速度至少應(yīng)為多少?

【答案】他步行的速度至少應(yīng)為4千米/時(shí).

【解析】試題分析:由題意可知,小明騎車(chē)(4-1)千米所用的時(shí)間為小時(shí),小明步行4千米所用的時(shí)間為(7:30-7)=30分鐘=小時(shí),則小明步行1千米所用的時(shí)間為 )小時(shí),設(shè)他步行的速度為x千米/時(shí),根據(jù)步行的速度乘以步行所用的時(shí)間≥1,列出不等式,解不等式即可求得答案.

試題解析:

設(shè)他步行的速度為x千米/時(shí).由題意,得,解得x ≥4.

答:他步行的速度至少應(yīng)為4千米/時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解決問(wèn)題時(shí)需要思考:是否解決過(guò)與其類(lèi)似的問(wèn)題.小明從問(wèn)題1解題思路中獲得啟發(fā)從而解決了問(wèn)題2.

問(wèn)題1:如圖①,在正方形ABCD中,E、FBC、CD上兩點(diǎn),∠EAF=45°.

求證:∠AEF=∠AEB.

小明給出的思路為:延長(zhǎng)EBH,滿(mǎn)足BHDF,連接AH.請(qǐng)完善小明的證明過(guò)程.

問(wèn)題2:如圖②,在等腰直角△ABC中,∠ACB=90°,ACBC=4,DAB中點(diǎn),E、FAC、BC邊上兩點(diǎn),∠EDF=45°.

(1)求點(diǎn)DEF的距離.

(2)若AEa,則SDEF (用含字母a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)從貨場(chǎng)A出發(fā),向東走了2千米到達(dá)批發(fā)部B,繼續(xù)向東走1.5千米到達(dá)商場(chǎng)C,又向西走了5.5千米到達(dá)超市D,最后回到貨場(chǎng).

1)用一個(gè)單位長(zhǎng)度表示1千米,以東為正方向,以貨場(chǎng)為原點(diǎn),畫(huà)出數(shù)軸并在數(shù)軸上標(biāo)明貨場(chǎng)A,批發(fā)部B,商場(chǎng)C,超市D的位置.

2)超市D距貨場(chǎng)A多遠(yuǎn)?

3)貨車(chē)一共行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列代數(shù)式:

1a的平方與b2倍的差:

2)被5除商是x,余數(shù)是3的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在xy軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(8,n)在邊AB上,反比例函數(shù)k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D、E,且tanBOA=

(1)求反比例函數(shù)的解析式和n的值;

(2)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求G點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用13 200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28 800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.

(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?

(2)若兩批襯衫按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下50件按八折優(yōu)惠賣(mài)出,如果兩批襯衫全部售完利潤(rùn)率不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為極大地滿(mǎn)足人民生活的需求,豐富市場(chǎng)供應(yīng),某區(qū)農(nóng)村溫棚設(shè)施農(nóng)業(yè)迅速發(fā)展,溫棚種植面積在不斷擴(kuò)大.在耕地上培成一行一行的長(zhǎng)方形土埂,按順序間隔種植不同農(nóng)作物的方法叫分壟間隔套種.科學(xué)研究表明:在塑料溫棚中分壟間隔套種高、矮不同的蔬菜和水果(同一種緊挨在一起種植不超過(guò)兩壟),可增加它們的光合作用,提高單位面積的產(chǎn)量和經(jīng)濟(jì)效益.

現(xiàn)有一個(gè)種植總面積為540 m2的長(zhǎng)方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過(guò)14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤(rùn)分別如下:

占地面積(m2/)

產(chǎn)量(千克/)

利潤(rùn)(/千克)

西紅柿

30

160

1.1

草莓

15

50

1.6

(1)若設(shè)草莓共種植了壟,通過(guò)計(jì)算說(shuō)明共有幾種種植方案,分別是哪幾種;

(2)在這幾種種植方案中,哪種方案獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線與坐標(biāo)軸交于點(diǎn)A,C,經(jīng)過(guò)點(diǎn)A,C的拋物線y=ax2+bx-3與x軸交于點(diǎn)B(2,0).

(1)求拋物線的解析式;

(2)點(diǎn)D是拋物線在第三象限圖象上的動(dòng)點(diǎn),是否存在點(diǎn)D,使得△DAC的面積最大,若存在,請(qǐng)求這個(gè)最大值并求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)點(diǎn)D作DEx軸于E,交AC于F,若AC恰好將△ADE的面積分成1:4兩部分,請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=2x+m-1是正比例函數(shù),則m=___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案