【題目】如圖,四邊形ABCD是平行四邊形,∠BAD的平分線交BD于點(diǎn)E , 交CD于點(diǎn)F , 交BC的延長線于點(diǎn)G , 則下列結(jié)論中正確的是(  )
A.AE2=EFFG
B.AE2=EFEG
C.AE2=EGFG
D.AE2=EFAG

【答案】B
【解析】解答:∵四邊形ABCD是平行四邊形,∴△ADE∽△EGB , △DEF∽△AEB ,
= , =
= ,
AE2=EFEG
所以選項(xiàng)B正確,
故選B
分析:解答此題的關(guān)鍵是利用平行四邊形證明出△ADE∽△EGB , △DEF∽△AEB , 然后利用對(duì)應(yīng)邊成比例即可解答此題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識(shí),掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹CD的高度,他們先在點(diǎn)A處測(cè)得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在課題學(xué)習(xí)后,同學(xué)們?yōu)榻淌掖皯粼O(shè)計(jì)一個(gè)遮陽蓬,小明同學(xué)繪制的設(shè)計(jì)圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽蓬,已知當(dāng)?shù)匾荒曛性谖鐣r(shí)的太陽光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據(jù)以上數(shù)據(jù),計(jì)算出遮陽蓬中CD的長是(結(jié)果精確到0.1)(參考數(shù)據(jù):sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)( 。

A.1.2米
B.1.5米
C.1.9米
D.2.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,F(xiàn)在BD上,BC、AD相交于點(diǎn)E,且AB∥CD∥EF,
(1)圖中有哪幾對(duì)位似三角形,選其中一對(duì)加以證明;
(2)若AB=2,CD=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC的高CDBE相交于點(diǎn)O , 圖中與△ODB相似的三角形有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結(jié)論中,正確的是
①BE=CD;②∠BOD=60°;③△BOD∽△COE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長是(

A.4
B.
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.

(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

同步練習(xí)冊(cè)答案