【題目】如圖,正方形的邊長為12,點(diǎn)、分別在、上,若,且,則______.
【答案】
【解析】
首先延長FD到G,使DG=BE,利用正方形的性質(zhì)得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性質(zhì)易證△GCF≌△ECF,利用勾股定理可得DF,求出AF,設(shè)BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
解:如圖,延長FD到G,使DG=BE;
連接CG、EF;
∵四邊形ABCD為正方形,
在△BCE與△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF與△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=124=8,
設(shè)BE=x,則AE=12x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,且與AB的延長線交于點(diǎn)E.點(diǎn)C是弧BF的中點(diǎn).
(1)求證:AD⊥CD;
(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點(diǎn)B出發(fā),沿著BE--EC--弧CB爬回至點(diǎn)B,求螞蟻爬過的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣6,點(diǎn)B在數(shù)軸上A點(diǎn)右側(cè),且AB=14,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)M表示的數(shù) (用含t的式子表示);
(2)動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)M,N同時(shí)出發(fā),問點(diǎn)M運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)N?
(3)若P為AM的中點(diǎn),F為MB的中點(diǎn),點(diǎn)M在運(yùn)動(dòng)過程中,線段PF的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算.
(1)(﹣3)×(+4)﹣48÷|﹣6|
(2)77°53'26″+33.3°(結(jié)果用度分秒形式表示)
(3)[﹣14﹣(1﹣0.5×)]×[3﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點(diǎn)B的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八年級男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計(jì),繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,請結(jié)合圖中信息回答下列問題:
(1)本次抽測的男生有 人,請將條形圖補(bǔ)充完成,本次抽測成績的中位數(shù)是 次;
(2)若規(guī)定引體向上6次及其以上為體能達(dá)標(biāo),則該校500名八年級男生中估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實(shí)數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}=2. 類似地,若函數(shù)y1、y2都是x的函數(shù),則y=min{y1, y2}表示函數(shù)y1和y2的“取小函數(shù)”.
(1)設(shè)y1=x,y2=,則函數(shù)y=min{x, }的圖像應(yīng)該是 中的實(shí)線部分.
(2)請?jiān)谙聢D中用粗實(shí)線描出函數(shù)y=min{(x-2)2, (x+2)2}的圖像,并寫出該圖像的三條不同性質(zhì):
① ;
② ;
③ ;
(3)函數(shù)y=min{(x-4)2, (x+2)2}的圖像關(guān)于 對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張華隨爸爸來西安游玩,他們還有四個(gè)旅游景點(diǎn)沒去,分別是西安以東的兵馬俑和華山,西安以西的乾陵和法門寺。由于僅剩兩天的時(shí)間,張華不能游玩所有風(fēng)景區(qū),于是爸爸讓張華從四張旅游景點(diǎn)圖片(大小、形狀及背面圖案完全相同)中抽簽確定.爸爸將這四張圖片背面朝上洗勻后,讓張華先隨機(jī)抽取一張(不放回),再抽取一張,若抽到的兩個(gè)景點(diǎn)都在西安以東或都在西安以西,則爸爸帶他到這兩個(gè)景點(diǎn)旅游,否則只能去一個(gè)景點(diǎn)旅游(兵馬俑、華山、乾陵、法門寺這四張圖片分別用B,H,Q,F(xiàn)表示).
(1)求張華抽到景點(diǎn)兵馬俑的圖片的概率;
(2)請你用列表或畫樹狀圖的方法求張華能去兩個(gè)景點(diǎn)旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做“等高底”三角形,這條邊叫做這個(gè)三角形的“等底”。
(1)概念理解:
如圖1,在中, ,.,試判斷是否是“等高底”三角形,請說明理由.
(2)問題探究:
如圖2, 是“等高底”三角形,是“等底”,作關(guān)于所在直線的對稱圖形得到,連結(jié)交直線于點(diǎn).若點(diǎn)是的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知,與之間的距離為2.“等高底”的“等底” 在直線上,點(diǎn)在直線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com