【題目】如圖所示,在RtABC中,∠C=90°,BC=1AC=4,把邊長分別為,,,n個正方形依次放入ABC中,則第n個正方形的邊長_______________(用含n的式子表示).

【答案】

【解析】

根據正方形的對邊平行證明BDF∽△BCA,然后利用相似三角形對應邊成比例列出比例式即可求出第1個正方形的邊長,同理利用前兩個小正方形上方的三角形相似,根據相似三角形對應邊成比例列出比例式即可求出前兩個小正方形的邊長的關系,以此類推,找出規(guī)律便可求出第n個正方形的邊長.

解:如下圖所示,

∵四邊形DCEF是正方形,
DFCE,
∴△BDF∽△BCA,
DFAC=BDBC,
x14=1-x1):1
解得x1= ,
同理,前兩個小正方形上方的三角形相似,

解得x2=x12
同理可得,

解得:

以此類推,第n個正方形的邊長.

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關系式,并寫出自變量x的取值范圍.

2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+圖象與x軸,y軸分別相交于A、B兩點,與反比例函數(shù)y=(k≠0)的圖象相交于點E、F,過F作y軸的垂線,垂足為點C,已知點A(﹣3,0),點F(3,t).

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)求點E的坐標并求△EOF的面積;

(3)結合該圖象寫出滿足不等式﹣ax≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB90°,D是射線CB上一點(點D不與點B重合),以AD為斜邊作等腰直角三角形ADE(點E和點CAB的同側),連接CE

1)如圖,當點D與點C重合時,直接寫出CEAB的位置關系;

2)如圖,當點D與點C不重合時,(1)的結論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;

3)當∠EAC15°時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點CAECD于點E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】愛動腦筋的小明在學過用配方法解一元二次方程后,他發(fā)現(xiàn)二次三項式也可以配方,從而解決一些問題.

例如:;因此 有最小值是1,只有當 時,才能得到這個式子的最小值1

同樣,因此有最大值是8,只有當 時,才能得到這個式子的最大值8

1)當x   時,代數(shù)式﹣2x32+5有最大值為   

2)當x   時,代數(shù)式2x2+4x+3有最小值為   

3)矩形自行車場地ABCD一邊靠墻(墻長10m),在ABBC邊各開一個1米寬的小門(不用木板),現(xiàn)有能圍成14m長的木板,當AD長為多少時,自行車場地的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經yax2+bx3A1,0)、B3,0)、C三點.

1)求拋物線解析式;

2)如圖1,點PBC上方拋物線上一點,作PQy軸交BCQ點.請問是否存在點P使得△BPQ為等腰三角形?若存在,請直接寫出P點坐標;若不存在,請說明理由;

3)如圖2,連接AC,點D是線段AB上一點,作DEBCACE點,連接BE.若△BDE∽△CEB,求D點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAC=60°,AD平分BACO于點D,連接OB、OC、BD、CD

1)求證:四邊形OBDC是菱形;

2)當BAC為多少度時,四邊形OBDC是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙于點E,∠BCD=∠DBE.

1)求證:BD是⊙的切線.

2)過點EEFABF,交BCG,已知DE=EG=3,求BG的長.

查看答案和解析>>

同步練習冊答案