【題目】如圖,給出下列四組條件:①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F; ④AB=DE,AC=DF,∠B=∠E.能使△ABC≌△DEF有_____組.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知蝸牛從點(diǎn)出發(fā),在一條數(shù)軸上來回爬行,規(guī)定:向正半軸運(yùn)動(dòng)記作“+”,向負(fù)半軸運(yùn)動(dòng)記作“-”,從開始到結(jié)束爬行的各段路程(單位:)依次為:+7,-5,-10,-8,+9,-6,+12,+4.
(1)若點(diǎn)在數(shù)軸上表示的數(shù)為-3,則蝸牛停在數(shù)軸上何處,請通過計(jì)算加以說明;
(2)蝸牛在(1)題在數(shù)軸上停的位置作以下運(yùn)動(dòng):第1次向左移動(dòng)1個(gè)單位長度至點(diǎn),第2次從點(diǎn)向右移動(dòng)2個(gè)單位長度至點(diǎn),第3次從點(diǎn)向左移動(dòng)3個(gè)單位長度至點(diǎn),第4次從點(diǎn)向右移動(dòng)4個(gè)單位長度至點(diǎn),…,依此類推.這樣第2019次移動(dòng)到的點(diǎn)在數(shù)軸上表示的數(shù)為(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB=5,AB=6,AB⊥y軸,垂足為A.反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,交AB于點(diǎn)D.
(1)若OA=8,求k的值;
(2)若CB=BD,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=160°.第一步:在△ABC上方確定一點(diǎn)A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如圖1,則∠A1的度數(shù)為__;第二步:在△A1BC上方確定一點(diǎn)A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如圖2.照此下去,至多能進(jìn)行___步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn),∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司根據(jù)市場計(jì)劃調(diào)整投資策略,對A、B兩種產(chǎn)品進(jìn)行市場調(diào)查,收集數(shù)據(jù)如下表:
項(xiàng)目 產(chǎn)品 | 年固定成本 (單位:萬元) | 每件成本 (單位:萬元) | 每件產(chǎn)品銷售價(jià) (萬元) | 每年最多可生產(chǎn)的件數(shù) |
A | 20 | m | 10 | 200 |
B | 40 | 8 | 18 | 120 |
其中,m是待定系數(shù),其值是由生產(chǎn)A的材料的市場價(jià)格決定的,變化范圍是6≤m<8,銷售B產(chǎn)品時(shí)需繳納x2萬元的關(guān)稅.其中,x為生產(chǎn)產(chǎn)品的件數(shù).假定所有產(chǎn)品都能在當(dāng)年售出,設(shè)生產(chǎn)A,B兩種產(chǎn)品的年利潤分別為y1、y2(萬元).
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式,注明其自變量x的取值范圍.
(2)請你通過計(jì)算比較,該公司生產(chǎn)哪一種產(chǎn)品可使最大年利潤更大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=mx2﹣6mx+5m與x軸交于A、B兩點(diǎn),以AB為直徑的⊙P經(jīng)過該拋物線的頂點(diǎn)C,直線l∥ x軸,交該拋物線于M、N兩點(diǎn),交⊙ P與E、F兩點(diǎn),若EF=2,則MN的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的情境對話,然后解答問題
(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.
求證:ACE是奇異三角形;
當(dāng)ACE是直角三角形時(shí),求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦放假時(shí),小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.
(1)若以小明家為原點(diǎn),向東為正方向,用1個(gè)單位長度表示1千米,請將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;
(2)超市和姥爺家相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com