【題目】如圖,已知拋物線和x軸交于兩點(diǎn)A、B,和y軸交于點(diǎn)C,已知A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,ABC是直角三角形,∠ACB=90°,則此拋物線頂點(diǎn)的坐標(biāo)為_____

【答案】

【解析】

連接AC,根據(jù)題意易證△AOC∽△COB,,求得OC=2,即點(diǎn)C的坐標(biāo)為(0,2),可設(shè)拋物線解析式為y=a(x+1)(x﹣4),然后將C點(diǎn)坐標(biāo)代入求解,最后將解析式化為頂點(diǎn)式即可.

解:連接AC,

∵A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,

∴OA=1,OB=4,

∵∠ACB=90°,

∴∠CAB+∠ABC=90°,

∵CO⊥AB,

∴∠ABC+∠BCO=90°,

∴∠CAB=∠BCO,

∵∠AOC=∠BOC=90°,

∴△AOC∽△COB,

=

解得OC=2,

點(diǎn)C的坐標(biāo)為(0,2),

∵A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,

設(shè)拋物線解析式為y=a(x+1)(x﹣4),

把點(diǎn)C的坐標(biāo)代入得,a(0+1)(0﹣4)=2,

解得a=﹣,

∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣2+,

此拋物線頂點(diǎn)的坐標(biāo)為 ).

故答案為: , ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A、B,動(dòng)點(diǎn)Q在線段AB上以每秒1個(gè)單位長度的速度從點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)Q作AB的垂線交x軸于點(diǎn)P,設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.

求證

是否存在t值,為等腰三角形?若存在,求出t值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰△ABC中,底邊BC20,DAB上一點(diǎn),且CD16,BD12,則△ABC的周長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,4)、C(﹣2,0)在直線l:y=kx+b上,l和函數(shù)y=﹣4x+a的圖象交于點(diǎn)B

(1)求直線l的表達(dá)式;

(2)若點(diǎn)B的橫坐標(biāo)是1,求關(guān)于x、y的方程組的解及a的值.

(3)若點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為P,求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三位數(shù)的十位數(shù)字比個(gè)位數(shù)字和百位數(shù)字都大,則稱這個(gè)數(shù)為“傘數(shù)”.現(xiàn)從,,這四個(gè)數(shù)字中任取個(gè)數(shù),組成無重復(fù)數(shù)字的三位數(shù).甲、乙二人玩一個(gè)游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.則甲獲勝的概率是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育考試項(xiàng)目和實(shí)驗(yàn)考試項(xiàng)目采用抽簽方式?jīng)Q定,規(guī)定:實(shí)驗(yàn)抽考測密度、歐姆定律、二氧化碳制取三個(gè)實(shí)驗(yàn)項(xiàng)目中的一個(gè)(用紙簽、表示).體育中考的跳繩、籃球運(yùn)球投籃、立定跳遠(yuǎn)三個(gè)項(xiàng)目(用紙簽、表示)抽取一項(xiàng)進(jìn)行考試.在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).

用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;

聰聰抽到(記作事件)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王華由,,,,這些算式發(fā)現(xiàn):任意兩個(gè)奇數(shù)的平方差都是8的倍數(shù)

1)請(qǐng)你再寫出兩個(gè)(不同于上面算式)具有上述規(guī)律的算式;

2)請(qǐng)你用含字母的代數(shù)式概括王華發(fā)現(xiàn)的這個(gè)規(guī)律(提示:可以使用多個(gè)字母);

3)證明這個(gè)規(guī)律的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰中,,點(diǎn)、分別在邊的延長線上,,過點(diǎn)于點(diǎn),交于點(diǎn).

1)若,求的度數(shù);

2)若.求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案