【題目】如圖,在Rt△ABC中,∠B=90°,按如下步驟作圖: ①分別以點B、C為圓心,大于 AB的長為半徑作弧,兩弧相交于點M和N;
②作直線MN交AC于點D,
③連接BD,
若AC=8,則BD的長為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王玩游戲:一張紙片,第一次將其撕成四小片,以后每次都將其中一片撕成更小的四片,如此進行下去.
(1)填空:當(dāng)小王撕了3次后,共有________張紙片;
(2)填空:當(dāng)小王撕了n次后,共有________張紙片.(用含n的代數(shù)式表示)
(3)小王說:我撕了若干次后,共有紙片2013張,小王說的對不對?若不對,請說明你的理由;若對的,請指出小王需撕多少次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,若AE平分∠BAD交BC于點E,且BO=BE,連接OE,則∠BOE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條外角平分線BP,CP相交于點P,PE⊥AC交AC的延長線于點E.若△ABC的周長為11,PE=2,S△BPC=2,則S△ABC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c與x軸交于點A,B(A在B的左側(cè)),拋物線的對稱軸為直線x=1,AB=4.
(1)求拋物線的表達(dá)式;
(2)拋物線上有兩點M(x1 , y1)和N(x2 , y2),若x1<1,x2>1,x1+x2>2,試判斷y1與y2的大小,并說明理由;
(3)直線l過A及C(0,﹣2),P為拋物線上一點(在x軸上方),過P作PD∥y軸交直線AC于點D,以PD為直徑作⊙E,求⊙E在直線AC上截得的線段的最大長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,D是AB邊上的一點,過點D作DE∥BC,∠ABC的角平分線于點E.
(1)如圖1,當(dāng)點E恰好在AC邊上時,求證:∠ADE=2∠DEB;
(2)如圖2,當(dāng)點D在BA的延長線上時,其余條件不變,請直接寫出∠ADE與∠DEB之間的數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=6cm,D為邊AB中點.動點P、Q在邊AB上同時從點D出發(fā),點P沿D→A以1cm/s的速度向終點A運動.點Q沿D→B→D以2cm/s的速度運動,回到點D停止.以PQ為邊在AB上方作等邊三角形PQN.將△PQN繞QN的中點旋轉(zhuǎn)180°得到△MNQ.設(shè)四邊形PQMN與△ABC重疊部分圖形的面積為S(cm2),點P運動的時間為t(s)(0<t<3).
(1)當(dāng)點N落在邊BC上時,求t的值.
(2)當(dāng)點N到點A、B的距離相等時,求t的值.
(3)當(dāng)點Q沿D→B運動時,求S與t之間的函數(shù)表達(dá)式.
(4)設(shè)四邊形PQMN的邊MN、MQ與邊BC的交點分別是E、F,直接寫出四邊形PEMF與四邊形PQMN的面積比為2:3時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1.
(1)在圖中畫出△A1B1C1;
(2)點A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com