【題目】某玩具專柜要經(jīng)營一種新上市的兒童玩具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出專柜銷售這種玩具,每天所得的銷售利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該玩具每天的銷售利潤最大;
(3)專柜結(jié)合上述情況,設(shè)計了A、B兩種營銷方案: 方案A:該玩具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件玩具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.

【答案】
(1)解:由題意可得:

w=(x﹣20)(250﹣10x+250)

=﹣10x2+700x﹣10000;


(2)解:w=﹣10x2+700x﹣10000

=﹣10(x﹣35)2+2250,

所以,當(dāng)x=35時,w有最大值2250,

即銷售單價為35元時,該文具每天的銷售利潤最大;


(3)解:方案A:由題可得20<x≤30,

因為a=﹣10<0,對稱軸為x=35,

拋物線開口向下,在對稱軸左側(cè),w隨x的增大而增大,

所以,當(dāng)x=30時,w取最大值為2000元,

方案B:由題意得: ,

解得:45≤x≤49,

在對稱軸右側(cè),w隨x的增大而減小,

所以,當(dāng)x=45時,w取最大值為1250元,

因為2000元>1250元,

所以選擇方案A.


【解析】(1)直接利用每件利潤×銷量=總利潤,進而得出函數(shù)關(guān)系式;(2)直接利用配方法求出二次函數(shù)最值即可;(3)首先得出x的取值范圍,進而利用二次函數(shù)增減性得出利潤的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一長度為10的線段AC的兩個端點A、C分別在y軸和x軸的正半軸上滑動,以A為直角頂點,AC為直角邊在第一象限內(nèi)作等腰直角△ABC,連接BO.
(1)求OB的最大值;
(2)在AC滑動過程中,△OBC能否恰好為等腰三角形?若能,求出此時點A的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能判定△ADB∽△ABC的是(
A.∠ABD=∠ACB
B.∠ADB=∠ABC
C.AB2=AD?AC
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H.
(1)求證:△BEF≌△CEH;
(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽.某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級“經(jīng)典誦讀”比賽活動,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:

(1)該校七(1)班共有名學(xué)生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于度;
(2)補全條形統(tǒng)計圖;
(3)若A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線相交于點O,將線段OD繞點O旋轉(zhuǎn),使點D的對應(yīng)點落在BC延長線上的點E處,OE交CD于H,連接DE.

(1)求證:DE⊥BC;
(2)若OE⊥CD,求證:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A'處,當(dāng)A'E⊥AC時,A'B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.

(1)若△AMP的面積為y,寫出y與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?

查看答案和解析>>

同步練習(xí)冊答案