如圖所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,點(diǎn)P從點(diǎn)A開始沿AB邊向B以2厘米/秒的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以1厘米/秒的速度移動(dòng),如果P、Q分別從A、B同時(shí)出發(fā),幾秒鐘后P、Q間的距離等于2厘米?(把實(shí)際問題轉(zhuǎn)化為幾何問題)

【答案】分析:設(shè)t秒后PQ=,則BP=6-2t,BQ=3-t,在直角△BPQ中,根據(jù)勾股定理BP2+BQ2=PQ2可求t的值.
解答:解:在直角三角形中AB=6cm=2BC=2×3cm,
且P的移動(dòng)速度是Q的移動(dòng)速度的2倍,
∴BP,BQ滿足BP=2BQ的關(guān)系
設(shè)t秒后PQ=,
則BP=6-2t,BQ=3-t,
且(6-2t)2+(3-t)2=,
解得t=1.
答:1秒后PQ間的距離為2
點(diǎn)評(píng):本題考查了直角三角形中勾股定理的運(yùn)用,本題中抓住BP=2BQ并且根據(jù)勾股定理求t是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過點(diǎn)A作AF∥BC交ED的延長(zhǎng)線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長(zhǎng)為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,那么BE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(dòng)(不包括點(diǎn)C),點(diǎn)P的運(yùn)動(dòng)速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(dòng)(不包括點(diǎn)A),運(yùn)動(dòng)速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長(zhǎng)時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過多長(zhǎng)時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案