【題目】某市中招體育測試改革,其中籃球和足球作為選考項目,某商店抓住這一商機決定購進一批籃球和足球共200個,這兩種球的進價和售價如下表所示:
籃球 | 足球 | |
進價(元/個) | 180 | 150 |
售價(元/個) | 250 | 200 |
(1)若商店計劃銷售完這批球后能獲利11600元,問籃球和足球應(yīng)分別購進多少個?
(2)設(shè)購進籃球個,獲利為元,求與之間的函數(shù)關(guān)系;
(3)若商店計劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請問有哪幾種購球方案,并寫出獲利最大的購球方案.
【答案】(1)購進籃球80個,購進足球120個;(2);(3)3種購球方案見解析;獲利最大的購球方案為購進籃球52個,購進足球148個.
【解析】
(1)購進籃球個,則購進足球,根據(jù)題中等量關(guān)系列出方程,求得m值;
(2)根據(jù)總獲利等于籃球的獲利加上足球的獲利列出函數(shù)關(guān)系式即可;
(3)根據(jù)投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,列出不等式組,求得x的取值范圍,又因為x為整數(shù),可確定x的取值,然后利用一次函數(shù)的性質(zhì)可得獲利最大的購球方案.
(1)設(shè)購進籃球個,則購進足球個,
由題意,得:,
解得:,
,
即購進籃球80個,購進足球120個;
(2)設(shè)購進籃球x個,則購進足球個,
由題意,可得,
即;
(3)由題意,得,
解得:,且為整數(shù),
共有3種方案,如下表
籃球 | 足球 | |
方案一 | 50 | 150 |
方案二 | 51 | 149 |
方案三 | 52 | 148 |
中,
隨的增大而增大
當(dāng)時,取得最大值.
即獲利最大的購球方案為:購進籃球52個,購進足球148個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,有線段和線段,點、、、均在小正方形的頂點上.
(1)在圖中畫出以為斜邊的直角三角形,點在小正方形的頂點上,且直角三角形的面積為5;
(2)在圖中畫出以為一邊的正方形點在小正方形的頂點上,并直接寫出直角三角形與正方形重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的對角線AC、BD相交于點O,過O點作OE⊥AC,交AB于E,若BC=4,△AOE的面積是5,則下列說法錯誤的是( )
A.AE=5B.∠BOE=∠BCEC.CE⊥OBD.sin∠BOE=0.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,對角線AC、BD交于點O,E是BC延長線上一點,且AC=EC,連接AE交BD于點P.
(1)求∠DAE的度數(shù);
(2)求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,以(1,0)為圓心的⊙P與y軸相切于原點O,過點A(-1,0)的直線AB與⊙P相切于點B.
(1)求AB的長.
(2)求AB、OA與所圍成的陰影部分面積.
(3)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞頂點A順時針旋轉(zhuǎn)60°后得到△AB1C1,且C1為BC的中點,AB與B1C1相交于D,若AC=2,則線段B1D的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】豎直上拋的小球離地高度是它運動時間的二次函數(shù),小軍相隔1秒依次豎直向上拋出兩個小球,假設(shè)兩個小球離手時離地高度相同,在各自拋出后1.1秒時到達相同的最大離地高度,第一個小球拋出后秒時在空中與第二個小球的離地高度相同,則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC分別是⊙O的直徑和弦,點D為劣弧AC上一點,弦DE⊥AB分別交⊙O于E,交AB于H,交AC于F.P是ED延長線上一點且PC=PF.
(1) 求證:PC是⊙O的切線;
(2) 點D在劣弧AC什么位置時,才能使,為什么?
(3) 在(2)的條件下,若OH=1,AH=2,求弦AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com